A shared multi-scale lightweight convolution generative network for few-shot multivariate time series forecasting

被引:0
|
作者
Zhang, Minglan [1 ,3 ]
Sun, Linfu [1 ,3 ]
Yang, Jing [2 ]
Zou, Yisheng [1 ,3 ]
机构
[1] Southwest Jiaotong Univ, Sch Comp & Artificial Intelligence, Chengdu 610031, Sichuan, Peoples R China
[2] Southwest Jiaotong Univ, Sch Informat Sci & Technol, Chengdu 610031, Sichuan, Peoples R China
[3] Mfg Ind Chains Collaborat & Informat Support Techn, Chengdu 610031, Sichuan, Peoples R China
关键词
Multivariate time series forecasting; Few-shot; Multi-scale feature fusion; Convolution generative network; Parameters sharing; PREDICTION; LSTM; MODEL;
D O I
10.1016/j.asoc.2024.112420
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Time series forecasting is an important time series data mining technique. Among them, multivariate time series (MTS) forecasting has received extensive attention in many fields. However, many existing MTS forecasting models usually rely on a large amount of labeled data for model training, and data collection and labeling are difficult in real systems. The insufficient amount of data makes it difficult for the model to fully learn the intrinsic patterns and features of the data, which not only increases the prediction error, but also makes it hard to obtain satisfactory prediction results. To address this challenge, we propose a shared multi-scale lightweight convolution generative (SMLCG) network for few-shot multivariate time series forecasting by using samples generation strategy. The overall goal is to design a shared multi-scale feature generation prediction framework that generates data highly similar to the original sample and enriches the training sample to improve prediction accuracy. Specifically, the MTS is divided into different scales, and the multi-scale feature fusion module is utilized to capture and fuse the MTS information indifferent spatial dimensions to eliminate the heterogeneity among the data. Then, the key information in the multi-scale features is captured by a lightweight convolution generative network, and the feature weights are dynamically assigned to explore the change information. In addition, a spatio-temporal memory module is designed based on the parameter sharing strategy to capture the spatio-temporal dynamic relationship of sequences by learning the common knowledge in multi-scale features, thus improving the robustness and generalization ability. Through comprehensive experiments on four publicly available datasets and comparisons with other reported models, it is demonstrated that the SMLCG model can efficiently generate approximate samples in the few-shot case and provide excellent prediction results. The architecture of SMLCG serves as a valuable reference for practical solutions to address the few-shot problem in multivariate time series.
引用
收藏
页数:14
相关论文
共 50 条
  • [11] Multi-Scale Adaptive Graph Neural Network for Multivariate Time Series Forecasting
    Chen L.
    Chen D.
    Shang Z.
    Wu B.
    Zheng C.
    Wen B.
    Zhang W.
    IEEE Transactions on Knowledge and Data Engineering, 2023, 35 (10) : 10748 - 10761
  • [12] Multi-scale convolution enhanced transformer for multivariate long-term time series forecasting
    Li, Ao
    Li, Ying
    Xu, Yunyang
    Li, Xuemei
    Zhang, Caiming
    NEURAL NETWORKS, 2024, 180
  • [13] Multi-Scale Metric Learning for Few-Shot Learning
    Jiang, Wen
    Huang, Kai
    Geng, Jie
    Deng, Xinyang
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2021, 31 (03) : 1091 - 1102
  • [14] Few-shot image recognition based on multi-scale features prototypical network
    刘珈彤
    DUAN Yong
    HighTechnologyLetters, 2024, 30 (03) : 280 - 289
  • [15] Multi-scale feature self-enhancement network for few-shot learning
    Dong, Bowen
    Wang, Ronggui
    Yang, Juan
    Xue, Lixia
    MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (25) : 33865 - 33883
  • [16] Few-shot image recognition based on multi-scale features prototypical network
    Liu, Jiatong
    Duan, Yong
    High Technology Letters, 2024, 30 (03) : 280 - 289
  • [17] MARANet: Multi-scale Adaptive Region Attention Network for Few-Shot Learning
    Chen, Jia
    Li, Xiyang
    Ou, Yangjun
    Hu, Xinrong
    Peng, Tao
    ADVANCES IN COMPUTER GRAPHICS, CGI 2023, PT I, 2024, 14495 : 415 - 426
  • [18] Multi-scale attentional similarity guidance network for few-shot semantic segmentation
    Ze-yu Liu
    Jian-wei Liu
    Neural Computing and Applications, 2022, 34 : 18895 - 18915
  • [19] Multi-scale feature self-enhancement network for few-shot learning
    Bowen Dong
    Ronggui Wang
    Juan Yang
    Lixia Xue
    Multimedia Tools and Applications, 2021, 80 : 33865 - 33883
  • [20] A multi-scale hierarchical node graph neural network for few-shot learning
    Zhang, Yan
    Zhou, Xudong
    Wang, Ke
    Wang, Nian
    Li, Zenghui
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (20) : 58201 - 58223