Near-surface permafrost extent and active layer thickness characterized by reanalysis/assimilation data

被引:0
|
作者
Liu, Zequn [1 ,2 ]
Guo, Donglin [2 ,3 ,4 ]
Hua, Wei [1 ]
Chen, Yihui [3 ]
机构
[1] Chengdu Univ Informat Technol, Sch Atmospher Sci, Plateau Atmosphere & Environm Key Lab Sichuan Prov, Meteorol Disaster Predict & Warning Engn Lab Sichu, Chengdu, Peoples R China
[2] Chinese Acad Sci, Inst Atmospher Phys, Nansen Zhu Int Res Ctr, Beijing, Peoples R China
[3] Nanjing Univ Informat Sci & Technol, Collaborat Innovat Ctr Forecast & Evaluat Meteorol, Minist Educ, Key Lab Meteorol Disaster, Nanjing, Peoples R China
[4] Chinese Acad Sci, Inst Atmospher Phys, Key Lab Earth Syst Numer Modeling & Applicat, Beijing, Peoples R China
来源
ATMOSPHERIC SCIENCE LETTERS | 2025年 / 26卷 / 01期
基金
中国国家自然科学基金;
关键词
active layer thickness; permafrost; reanalysis/assimilation data; CLIMATE-CHANGE; SOIL; DEGRADATION; REANALYSIS; MODEL;
D O I
10.1002/asl.1289
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Whilst permafrost change is widely concerned in the context of global warming, lack of observations becomes one of major limitations for conducting large-scale and long-term permafrost change research. Reanalysis/assimilation data in theory can make up for the lack of observations, but how they characterize permafrost extent and active layer thickness remains unclear. Here, we investigate the near-surface permafrost extent and active layer thickness characterized by seven reanalysis/assimilation datasets (CFSR, MERRA-2, ERA5, ERA5-Land, GLDAS-CLSMv20, GLDAS-CLSMv21, and GLDAS-Noah). Results indicate that most of reanalysis/assimilation data have limited abilities in characterizing near-surface permafrost extent and active layer thickness. GLDAS-CLSMv20 is overall optimal in terms of comprehensive performance in characterizing both present-day near-surface permafrost extent and active layer thickness change. The GLDAS-CLSMv20 indicates that near-surface permafrost extent decreases by -0.69 x 106 km2 decade-1 and active layer deepens by 0.06 m decade-1 from 1979 to 2014. Change in active layer is significantly correlated to air temperature, precipitation, and downward longwave radiation in summer, but the correlations show regional differences. Our study implies an imperative to advance reanalysis/assimilation data's abilities to reproduce permafrost, especially for reanalysis data.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Interannual variations of the thermal regime of the active layer and near-surface permafrost in northern Alaska
    Romanovsky, VE
    Osterkamp, TE
    PERMAFROST AND PERIGLACIAL PROCESSES, 1995, 6 (04) : 313 - 335
  • [2] Changes in near-surface permafrost temperature and active layer thickness in Northeast China in 1961-2020 based on GIPL model
    Huang, Shuai
    Ding, Qian
    Chen, Kezheng
    Hu, Zheng
    Liu, Yanjie
    Zhang, Xiaodong
    Gao, Kai
    Qiu, Kaichi
    Yang, Yang
    Ding, Lin
    COLD REGIONS SCIENCE AND TECHNOLOGY, 2023, 206
  • [3] Seasonal variation in near-surface seasonally thawed active layer and permafrost soil microbial communities
    Baker, Christopher C. M.
    Barker, Amanda J.
    Douglas, Thomas A.
    Doherty, Stacey J.
    Barbato, Robyn A.
    ENVIRONMENTAL RESEARCH LETTERS, 2023, 18 (05)
  • [4] Geochemistry of the active layer and near-surface permafrost, Mackenzie delta region, Northwest Territories, Canada
    Kokelj, SV
    Burn, CR
    CANADIAN JOURNAL OF EARTH SCIENCES, 2005, 42 (01) : 37 - 48
  • [5] Landscape-scale variations in near-surface soil temperature and active-layer thickness: Implications for high-resolution permafrost mapping
    Zhang, Yu
    Touzi, Ridha
    Feng, Wanpeng
    Hong, Gang
    Lantz, Trevor C.
    Kokelj, Steven, V
    PERMAFROST AND PERIGLACIAL PROCESSES, 2021, 32 (04) : 627 - 640
  • [6] Changes in active-layer thickness and near-surface permafrost between 2002 and 2012 in alpine ecosystems, Qinghai-Xizang (Tibet) Plateau, China
    Wu Qingbai
    Hou Yandong
    Yun Hanbo
    Liu Yongzhi
    GLOBAL AND PLANETARY CHANGE, 2015, 124 : 149 - 155
  • [7] Temporal variations in the active layer and near-surface permafrost temperatures at the long-term observatories in Northern Alaska
    Romanovsky, VE
    Sergueev, DO
    Osterkamp, TE
    PERMAFROST, VOLS 1 AND 2, 2003, : 989 - 994
  • [8] Permafrost extent and active layer thickness variation in the Northern Hemisphere from 1969 to 2018
    Li, Guanji
    Zhang, Mingyi
    Pei, Wansheng
    Melnikov, Andrey
    Khristoforov, Ivan
    Li, Renwei
    Yu, Fan
    SCIENCE OF THE TOTAL ENVIRONMENT, 2022, 804
  • [9] Sensitivity of airborne geophysical data to sublacustrine and near-surface permafrost thaw
    Minsley, B. J.
    Wellman, T. P.
    Walvoord, M. A.
    Revil, A.
    CRYOSPHERE, 2015, 9 (02): : 781 - 794
  • [10] Highly restricted near-surface permafrost extent during the mid-Pliocene warm period
    Guo, Donglin
    Wang, Huijun
    Romanovsky, Vladimir E.
    Haywood, Alan M.
    Pepin, Nick
    Salzmann, Ulrich
    Sun, Jianqi
    Yan, Qing
    Zhang, Zhongshi
    Li, Xiangyu
    Otto-Bliesner, Bette L.
    Feng, Ran
    Lohmann, Gerrit
    Stepanek, Christian
    Abe-Ouchi, Ayako
    Chan, Wing-Le
    Peltier, W. Richard
    Chandan, Deepak
    von der Heydt, Anna S.
    Contoux, Camille
    Chandler, Mark A.
    Tan, Ning
    Zhang, Qiong
    Hunter, Stephen J.
    Kamae, Youichi
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2023, 120 (36)