Computational Study of Electrochemical CO2 Reduction on 2D Graphitic Carbon Nitride Supported Single-Atom (Al and P) Catalysts (SACs)

被引:0
|
作者
Wijesingha, Manoj [1 ]
Mo, Yirong [1 ]
机构
[1] Univ North Carolina Greensboro, Joint Sch Nanosci & Nanoengn JSNN, Dept Nanosci, Greensboro, NC 27401 USA
基金
美国国家科学基金会;
关键词
CO2; electroreduction; Single-atom catalyst (SAC); Frustrated Lewis pair (FLP); Density functional theory (DFT); Graphitic carbon; HEXAGONAL BORON-NITRIDE; TOTAL-ENERGY CALCULATIONS; FORMIC-ACID; CU ELECTRODES; OXIDATION; HYDROGENATION; GRAPHENE; OXIDE; PERFORMANCE; ACTIVATION;
D O I
10.1002/cphc.202400908
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
To mitigate the adverse effects of CO2 emissions, CO2 electroreduction to small organic products is a preferable solution and potential catalysts include the single-atom catalyst (SAC) which comprises individual atoms dispersed on 2D materials. Here, we used aluminum and phosphorus as the active sites for CO2 electroreductions by embedding them on the 2D graphitic carbon nitride (g-C3N4) nano-surface. The resulting M-C3N4 (M=Al and P) SACs were computationally studied for the CO2 electroreduction using density functional theory (DFT) and ab-initio molecular dynamics (AIMD) simulations. Computations showed that CO2 can be adsorbed to the active sites in forms of a frustrated Lewis pair (Al/N or P/N) or single atom Al or P. The adsorbed CO2 can be converted to various intermediates by gaining proton and electron (H++e(-)) pairs, a process simulated as electroreduction. While both SACs prefer to produce HCOOH with low potential determining steps (PDSs) and small overpotential values of 0.25 V and 0.08 V for Al-C3N4 and P-C3N4 respectively, to produce CH4, P-C3N4 exhibits a lower potential barrier of 0.9 eV than Al-C3N4 (1.07 similar to 1.17 eV).
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Recent Advances on Single-Atom Catalysts for CO2 Reduction
    Liu, Lizhen
    Li, Mingtao
    Chen, Fang
    Huang, Hongwei
    SMALL STRUCTURES, 2023, 4 (03):
  • [32] Key factors for designing single-atom metal-nitrogen-carbon catalysts for electrochemical CO2 reduction
    Jia, Chen
    Dastafkan, Kamran
    Zhao, Chuan
    CURRENT OPINION IN ELECTROCHEMISTRY, 2022, 31
  • [33] Recent progress of 3d transition metal as single-atom catalysts for electrochemical CO2 reduction to CO
    Lu, Song
    Chavan, Sachin Maruti
    Yu, Zhixin
    JOURNAL OF CO2 UTILIZATION, 2024, 80
  • [34] Computational Screening of Single and Di-Atom Catalysts for Electrochemical CO2 Reduction
    Karmodak, Naiwrit
    Vijay, Sudarshan
    Kastlunger, Georg
    Chan, Karen
    ACS CATALYSIS, 2022, 12 (09): : 4818 - 4824
  • [35] Mechanistic insight into hydration-enhanced electrochemical CO2 reduction on Ru single-atom catalysts: A computational investigation
    Chen, Hui-Lung
    Shen, Yun-Yi
    Chen, Hsin-Tsung
    APPLIED SURFACE SCIENCE ADVANCES, 2025, 26
  • [36] Recent Progress of 3d Transition Metal Single-Atom Catalysts for Electrochemical CO2 Reduction
    Xu, Chaochen
    Vasileff, Anthony
    Zheng, Yao
    Qiao, Shi-Zhang
    ADVANCED MATERIALS INTERFACES, 2021, 8 (05)
  • [37] Identification of Active Sites for CO2 Reduction on Graphene-Supported Single-Atom Catalysts
    Kang, Youngho
    Kang, Sungwoo
    Han, Seungwu
    CHEMSUSCHEM, 2021, 14 (11) : 2475 - 2480
  • [38] Computational screening of silver-based single-atom alloys catalysts for CO2 reduction
    Neto, Marionir M. C. B.
    Verga, Lucas G.
    Da Silva, Juarez L. F.
    Galvao, Breno R. L.
    JOURNAL OF CHEMICAL PHYSICS, 2024, 160 (09):
  • [39] Why heterogeneous single-atom catalysts preferentially produce CO in the electrochemical CO2 reduction reaction
    Wang, Yu
    Liu, Tianyang
    Li, Yafei
    CHEMICAL SCIENCE, 2022, 13 (21) : 6366 - 6372
  • [40] Phosphorene Supported Single-Atom Catalysts for CO Oxidation: A Computational Study
    Baskaran, Sambath
    Xu, Cong-Qiao
    Jiang, Ya-Fei
    Wang, Yang-Gang
    Li, Jun
    CHEMPHYSCHEM, 2021, 22 (04) : 378 - 385