Mechanistic insight into hydration-enhanced electrochemical CO2 reduction on Ru single-atom catalysts: A computational investigation

被引:0
|
作者
Chen, Hui-Lung [1 ]
Shen, Yun-Yi [2 ,3 ]
Chen, Hsin-Tsung [2 ,3 ]
机构
[1] Chinese Culture Univ, Dept Chem & Mat Engn, Taipei 111, Taiwan
[2] Chung Yuan Christian Univ, R&D Ctr Membrane Technol, Dept Chem, Taoyuan City 320314, Taiwan
[3] Chung Yuan Christian Univ, Res Ctr Semicond Mat & Adv Opt, Taoyuan City 320314, Taiwan
来源
关键词
Electrocatalytic CO2 reduction; Electrocatalysis; Ru-doped graphene; Single-metal catalysts; DFT calculations; EFFICIENT ELECTROCATALYST; SUPPORTED SINGLE; CARBON-DIOXIDE; METAL; METHANOL; ENERGY; ELECTROREDUCTION; CHALLENGES; MONOLAYER; OXIDATION;
D O I
10.1016/j.apsadv.2025.100724
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Using density functional theory (DFT) calculations, we investigated the electrocatalytic reduction of CO2 on Ru-doped graphene (Ru/G3C) and its nitrogen-coordinated counterpart (Ru/G3N). We found that nitrogen doping significantly enhances CO2 adsorption energy by 0.695 eV. To account for water production under experimental conditions, we analyzed both catalysts with saturated water coverage (3H(2)O@Ru/G3C and 3H(2)O@Ru/G3N) and examined CO2 reduction pathways involving COOH* and HCOO* intermediates to identify the potential determining step (PDS). Under pristine conditions, CO2 conversion to CH4 predominantly follows the HCOO* pathway, with a limiting potential (U-L) of -0.263 V for the PDS of HCOOH to H2COOH. When water is saturated (3H(2)O@Ru/G3C), formic acid formation becomes favorable at low potentials, with a U-L of -0.862 eV for the HCOOH to H2COOH step, ultimately leading to methanol or methane at higher reducing potentials. For Ru/G3N, CH4 formation via either the HCOO* or COOH* pathway requires a higher reducing potential (similar to 1 eV), making CO generation the dominant product at lower potentials. Water saturation (3H(2)O@Ru/ G3N) lowers the PDS for CH4 formation to 0.338 eV but still results in CO as the primary product at low potentials, with methanol and methane emerging as possible products at higher potentials. Overall, Ru/G3N is more suited for CO production, with potential for multi-product formation under water-rich conditions.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Mechanistic insight into electrochemical CO 2 reduction on Mo single-atom catalyst and its hydrate: A computational study
    Chen, Chun-Ying
    Chen, Hsin-Tsung
    MOLECULAR CATALYSIS, 2024, 564
  • [2] Electrochemical CO2 reduction of graphene single-atom/cluster catalysts
    Gao, Yongze
    Zhao, Mengdie
    Jiang, Liyun
    Yu, Qi
    MOLECULAR CATALYSIS, 2024, 562
  • [3] Theoretical investigation on graphene-supported single-atom catalysts for electrochemical CO2 reduction
    Wang, Xiting
    Niu, Huan
    Liu, Yuanshuang
    Shao, Chen
    Robertson, John
    Zhang, Zhaofu
    Guo, Yuzheng
    CATALYSIS SCIENCE & TECHNOLOGY, 2020, 10 (24) : 8465 - 8472
  • [4] C2N-graphene supported single-atom catalysts for CO2 electrochemical reduction reaction: mechanistic insight and catalyst screening
    Cui, Xudong
    An, Wei
    Liu, Xiaoyang
    Wang, Hao
    Men, Yong
    Wang, Jinguo
    NANOSCALE, 2018, 10 (32) : 15262 - 15272
  • [5] Electrochemical CO2 reduction on Single-Atom aluminum catalysts supported on graphene and N-doped Graphene: Mechanistic insights and hydration effects
    Wu, Shiuan-Yau
    Chuang, Tsai-Chun
    Chen, Hsin-Tsung
    APPLIED SURFACE SCIENCE, 2025, 681
  • [6] Insight into the active sites of M-N-C single-atom catalysts for electrochemical CO2 reduction
    Pan, Qin
    Chen, Yang
    Jiang, Shuoshuo
    Cui, Xin
    Ma, Guanghuan
    Ma, Tianyi
    ENERGYCHEM, 2023, 5 (06)
  • [7] Unraveling electrochemical oxygen reduction mechanism on single-atom catalysts by a computational investigation
    Chen, Jyun-Wei
    Wu, Shiuan-Yau
    Chen, Hsin-Tsung
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2022, 46 (02) : 1032 - 1042
  • [8] Single-atom catalysis for electrochemical CO2 reduction
    Jia, Mingwen
    Fan, Qun
    Liu, Shizhen
    Qiu, Jieshan
    Sun, Zhenyu
    CURRENT OPINION IN GREEN AND SUSTAINABLE CHEMISTRY, 2019, 16 : 1 - 6
  • [9] Computational screening of defective BC3-supported single-atom catalysts for electrochemical CO2 reduction
    Li, Renyi
    Wang, Caimu
    Liu, Yaozhong
    Suo, Chengxiang
    Zhang, Danyang
    Zhang, Jiao
    Guo, Wei
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2024, 26 (26) : 18285 - 18301
  • [10] Recent advances in the rational design of single-atom catalysts for electrochemical CO2 reduction
    Gu, Huoliang
    Wu, Jing
    Zhang, Liming
    NANO RESEARCH, 2022, 15 (11) : 9747 - 9763