DexPoint: Generalizable Point Cloud Reinforcement Learning for Sim-to-Real Dexterous Manipulation

被引:0
|
作者
Qin, Yuzhe [1 ]
Huang, Binghao [1 ]
Yin, Zhao-Heng [2 ]
Su, Hao [1 ]
Wang, Xiaolong [1 ]
机构
[1] Univ Calif San Diego, La Jolla, CA 92093 USA
[2] HKUST, Hong Kong, Peoples R China
来源
关键词
Dexterous Manipulation; Point Clouds; Sim-to-Real; CONTROL POLICIES; GRASP; HAND; VISION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a sim-to-real framework for dexterous manipulation which can generalize to new objects of the same category in the real world. The key of our framework is to train the manipulation policy with point cloud inputs and dexterous hands. We propose two new techniques to enable joint learning on multiple objects and sim-to-real generalization: (i) using imagined hand point clouds as augmented inputs; and (ii) designing novel contact-based rewards. We empirically evaluate our method using an Allegro Hand to grasp novel objects in both simulation and real world. To the best of our knowledge, this is the first policy learning-based framework that achieves such generalization results with dexterous hands. Our project page is available at https://yzqin.github.io/dexpoint
引用
收藏
页码:594 / 605
页数:12
相关论文
共 50 条
  • [21] Sim-to-Real Application of Reinforcement Learning Agents for Autonomous, Real Vehicle Drifting
    Toth, Szilard Hunor
    Viharos, Zsolt Janos
    Bardos, Adam
    Szalay, Zsolt
    VEHICLES, 2024, 6 (02): : 781 - 798
  • [22] Benchmarking the Sim-to-Real Gap in Cloth Manipulation
    Blanco-Mulero, David
    Barbany, Oriol
    Alcan, Gokhan
    Colome, Adria
    Torras, Carme
    Kyrki, Ville
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2024, 9 (03) : 2981 - 2988
  • [23] Sim-to-Real: Mapless Navigation for USVs Using Deep Reinforcement Learning
    Wang, Ning
    Wang, Yabiao
    Zhao, Yuming
    Wang, Yong
    Li, Zhigang
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2022, 10 (07)
  • [24] Blind Bipedal Stair Traversal via Sim-to-Real Reinforcement Learning
    Siekmann, Jonah
    Green, Kevin
    Warila, John
    Fern, Alan
    Hurst, Jonathan
    ROBOTICS: SCIENCE AND SYSTEM XVII, 2021,
  • [25] Sim-to-Real Robotic Sketching using Behavior Cloning and Reinforcement Learning
    Jia, Biao (biao@umd.edu), 1600, Institute of Electrical and Electronics Engineers Inc.
  • [26] Sim-to-Real Deep Reinforcement Learning with Manipulators for Pick-and-Place
    Liu, Wenxing
    Niu, Hanlin
    Skilton, Robert
    Carrasco, Joaquin
    TOWARDS AUTONOMOUS ROBOTIC SYSTEMS, TAROS 2023, 2023, 14136 : 240 - 252
  • [27] Zero-shot sim-to-real transfer of reinforcement learning framework for robotics manipulation with demonstration and force feedback
    Chen, Yuanpei
    Zeng, Chao
    Wang, Zhiping
    Lu, Peng
    Yang, Chenguang
    ROBOTICA, 2023, 41 (03) : 1015 - 1024
  • [28] Human-Guided Reinforcement Learning With Sim-to-Real Transfer for Autonomous Navigation
    Wu, Jingda
    Zhou, Yanxin
    Yang, Haohan
    Huang, Zhiyu
    Lv, Chen
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (12) : 14745 - 14759
  • [29] Robust Walking and Sim-to-Real Optimization for Quadruped Robots via Reinforcement Learning
    Ji, Chao
    Liu, Diyuan
    Gao, Wei
    Zhang, Shiwu
    JOURNAL OF BIONIC ENGINEERING, 2025, 22 (01) : 107 - 117
  • [30] Robust visual sim-to-real transfer for robotic manipulation
    Garcia, Ricardo
    Strudel, Robin
    Chen, Shizhe
    Arlaud, Etienne
    Laptev, Ivan
    Schmid, Cordelia
    2023 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, IROS, 2023, : 992 - 999