Hybrid Tree Tensor Networks for Quantum Simulation

被引:0
|
作者
Schuhmacher, Julian [1 ,2 ]
Ballarin, Marco [3 ,4 ,5 ]
Baiardi, Alberto [1 ]
Magnifico, Giuseppe [3 ,6 ,7 ]
Tacchino, Francesco [1 ]
Montangero, Simone [3 ,4 ,5 ]
Tavernelli, Ivano [1 ]
机构
[1] IBM Quantum, Saumerstr 4, CH-8803 Zurich, Switzerland
[2] Ecole Polytech Fed Lausanne EPFL, Inst Phys, CH-1015 Lausanne, Switzerland
[3] Dipartimento Fis & Astron G Galilei, Via Marzolo 8, I-35131 Lausanne, Italy
[4] Univ Padua, Padua Quantum Technol Res Ctr, Padua, Italy
[5] Ist Nazl Fis Nucl INFN, Sez Padova, I-35131 Padua, Italy
[6] Univ Bari, Dipartimento Fis, I-70126 Bari, Italy
[7] Ist Nazl Fis Nucl INFN, Sez Bari, I-70125 Bari, Italy
来源
PRX QUANTUM | 2025年 / 6卷 / 01期
基金
瑞士国家科学基金会; 欧盟地平线“2020”;
关键词
SYSTEMS;
D O I
10.1103/PRXQuantum.6.010320
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Hybrid tensor networks (hTNs) offer a promising solution for encoding variational quantum states beyond the capabilities of efficient classical methods or noisy quantum computers alone. However, their practical usefulness and many operational aspects of hTN-based algorithms, like the optimization of hTNs, the generalization of standard contraction rules to an hybrid setting, and the design of application-oriented architectures have not been thoroughly investigated yet. In this work, we introduce a novel algorithm to perform ground-state optimizations with hybrid tree tensor networks (hTTNs), discussing its advantages and roadblocks, and identifying a set of promising applications. We benchmark our approach on two paradigmatic models, namely the Ising model at the critical point and the Toric-code Hamiltonian. In both cases, we successfully demonstrate that hTTNs can improve upon classical equivalents with equal bond dimension in the classical part.
引用
收藏
页数:23
相关论文
共 50 条
  • [31] Improving Noisy Hybrid Quantum Graph Neural Networks for Particle Decay Tree Reconstruction
    Strobl, Melvin
    Kuehn, Eileen
    Fischer, Max
    Streit, Achim
    26TH INTERNATIONAL CONFERENCE ON COMPUTING IN HIGH ENERGY AND NUCLEAR PHYSICS, CHEP 2023, 2024, 295
  • [32] Efficient simulation of dynamics in two-dimensional quantum spin systems with isometric tensor networks
    Lin, Sheng-Hsuan
    Zaletel, Michael P.
    Pollmann, Frank
    PHYSICAL REVIEW B, 2022, 106 (24)
  • [33] A community detection-based parallel algorithm for quantum circuit simulation using tensor networks
    Pastor, Alfred M.
    Badia, Jose M.
    Castillo, Maribel
    JOURNAL OF SUPERCOMPUTING, 2025, 81 (03):
  • [34] Variational Power of Quantum Circuit Tensor Networks
    Haghshenas, Reza
    Gray, Johnnie
    Potter, Andrew C.
    Chan, Garnet Kin-Lic
    PHYSICAL REVIEW X, 2022, 12 (01)
  • [35] Quantum state preparation using tensor networks
    Melnikov, Ar A.
    Termanova, A. A.
    Dolgov, S., V
    Neukart, F.
    Perelshtein, M. R.
    QUANTUM SCIENCE AND TECHNOLOGY, 2023, 8 (03):
  • [36] Simulating quantum computation by contracting tensor networks
    Markov, Igor L.
    Shi, Yaoyun
    SIAM JOURNAL ON COMPUTING, 2008, 38 (03) : 963 - 981
  • [37] Application of Quantum Tensor Networks for Protein Classification
    Kundu, Debarshi
    Ghosh, Archisman
    Ekambaram, Srinivasan
    Wang, Jian
    Dokholyan, Nikolay
    Ghosh, Swaroop
    PROCEEDING OF THE GREAT LAKES SYMPOSIUM ON VLSI 2024, GLSVLSI 2024, 2024, : 132 - 137
  • [38] Towards quantum machine learning with tensor networks
    Huggins, William
    Patil, Piyush
    Mitchell, Bradley
    Whaley, K. Birgitta
    Stoudenmire, E. Miles
    QUANTUM SCIENCE AND TECHNOLOGY, 2019, 4 (02)
  • [39] Fermionic topological quantum states as tensor networks
    Wille, C.
    Buerschaper, O.
    Eisert, J.
    PHYSICAL REVIEW B, 2017, 95 (24)
  • [40] Quantum annealing algorithms for Boolean tensor networks
    Elijah Pelofske
    Georg Hahn
    Daniel O’Malley
    Hristo N. Djidjev
    Boian S. Alexandrov
    Scientific Reports, 12