Hybrid Tree Tensor Networks for Quantum Simulation

被引:0
|
作者
Schuhmacher, Julian [1 ,2 ]
Ballarin, Marco [3 ,4 ,5 ]
Baiardi, Alberto [1 ]
Magnifico, Giuseppe [3 ,6 ,7 ]
Tacchino, Francesco [1 ]
Montangero, Simone [3 ,4 ,5 ]
Tavernelli, Ivano [1 ]
机构
[1] IBM Quantum, Saumerstr 4, CH-8803 Zurich, Switzerland
[2] Ecole Polytech Fed Lausanne EPFL, Inst Phys, CH-1015 Lausanne, Switzerland
[3] Dipartimento Fis & Astron G Galilei, Via Marzolo 8, I-35131 Lausanne, Italy
[4] Univ Padua, Padua Quantum Technol Res Ctr, Padua, Italy
[5] Ist Nazl Fis Nucl INFN, Sez Padova, I-35131 Padua, Italy
[6] Univ Bari, Dipartimento Fis, I-70126 Bari, Italy
[7] Ist Nazl Fis Nucl INFN, Sez Bari, I-70125 Bari, Italy
来源
PRX QUANTUM | 2025年 / 6卷 / 01期
基金
瑞士国家科学基金会; 欧盟地平线“2020”;
关键词
SYSTEMS;
D O I
10.1103/PRXQuantum.6.010320
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Hybrid tensor networks (hTNs) offer a promising solution for encoding variational quantum states beyond the capabilities of efficient classical methods or noisy quantum computers alone. However, their practical usefulness and many operational aspects of hTN-based algorithms, like the optimization of hTNs, the generalization of standard contraction rules to an hybrid setting, and the design of application-oriented architectures have not been thoroughly investigated yet. In this work, we introduce a novel algorithm to perform ground-state optimizations with hybrid tree tensor networks (hTTNs), discussing its advantages and roadblocks, and identifying a set of promising applications. We benchmark our approach on two paradigmatic models, namely the Ising model at the critical point and the Toric-code Hamiltonian. In both cases, we successfully demonstrate that hTTNs can improve upon classical equivalents with equal bond dimension in the classical part.
引用
收藏
页数:23
相关论文
共 50 条
  • [21] Tensor networks for quantum machine learning
    Rieser, Hans-Martin
    Koester, Frank
    Raulf, Arne Peter
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2023, 479 (2275):
  • [22] QUANTUM COMPUTATION AND THE EVALUATION OF TENSOR NETWORKS
    Arad, Itai
    Landau, Zeph
    SIAM JOURNAL ON COMPUTING, 2010, 39 (07) : 3089 - 3121
  • [23] Tensor networks for quantum causal histories
    Guo, Xiao-Kan
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2020, 53 (12)
  • [24] Tensor networks for complex quantum systems
    Román Orús
    Nature Reviews Physics, 2019, 1 : 538 - 550
  • [25] Tensor Networks and Quantum Error Correction
    Ferris, Andrew J.
    Poulin, David
    PHYSICAL REVIEW LETTERS, 2014, 113 (03)
  • [26] Quantum Weight Enumerators and Tensor Networks
    Cao, ChunJun
    Lackey, Brad
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2024, 70 (05) : 3512 - 3528
  • [27] Quantum phase recognition using quantum tensor networks
    Sahoo, Shweta
    Azad, Utkarsh
    Singh, Harjinder
    EUROPEAN PHYSICAL JOURNAL PLUS, 2022, 137 (12):
  • [28] Quantum phase recognition using quantum tensor networks
    Shweta Sahoo
    Utkarsh Azad
    Harjinder Singh
    The European Physical Journal Plus, 137
  • [29] Machine Learning With Tree Tensor Networks, CP Rank Constraints, and Tensor Dropout
    Chen, Hao
    Barthel, Thomas
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024, 46 (12) : 7825 - 7832
  • [30] Time dependent variational principle for tree tensor networks
    Bauernfeind, Daniel
    Aichhorn, Markus
    SCIPOST PHYSICS, 2020, 8 (02):