HGNAS: <underline>H</underline>ardware-Aware <underline>G</underline>raph <underline>N</underline>eural <underline>A</underline>rchitecture <underline>S</underline>earch for Edge Devices

被引:0
|
作者
Zhou, Ao [1 ]
Yang, Jianlei [1 ]
Qi, Yingjie [1 ]
Qiao, Tong [1 ]
Shi, Yumeng [1 ]
Duan, Cenlin [2 ]
Zhao, Weisheng [2 ]
Hu, Chunming [1 ]
机构
[1] Beihang Univ, Sch Comp Sci & Engn, Beijing 100191, Peoples R China
[2] Beihang Univ, Sch Integrated Circuits & Engn, Beijing 100191, Peoples R China
基金
中国国家自然科学基金;
关键词
Graph neural networks; Aggregates; Hardware; Accuracy; Performance evaluation; Point cloud compression; Computer architecture; hardware-aware neural architecture search; edge devices; hardware efficiency prediction;
D O I
10.1109/TC.2024.3449108
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Graph Neural Networks (GNNs) are becoming increasingly popular for graph-based learning tasks such as point cloud processing due to their state-of-the-art (SOTA) performance. Nevertheless, the research community has primarily focused on improving model expressiveness, lacking consideration of how to design efficient GNN models for edge scenarios with real-time requirements and limited resources. Examining existing GNN models reveals varied execution across platforms and frequent Out-Of-Memory (OOM) problems, highlighting the need for hardware-aware GNN design. To address this challenge, this work proposes a novel hardware-aware graph neural architecture search framework tailored for resource constraint edge devices, namely HGNAS. To achieve hardware awareness, HGNAS integrates an efficient GNN hardware performance predictor that evaluates the latency and peak memory usage of GNNs in milliseconds. Meanwhile, we study GNN memory usage during inference and offer a peak memory estimation method, enhancing the robustness of architecture evaluations when combined with predictor outcomes. Furthermore, HGNAS constructs a fine-grained design space to enable the exploration of extreme performance architectures by decoupling the GNN paradigm. In addition, the multi-stage hierarchical search strategy is leveraged to facilitate the navigation of huge candidates, which can reduce the single search time to a few GPU hours. To the best of our knowledge, HGNAS is the first automated GNN design framework for edge devices, and also the first work to achieve hardware awareness of GNNs across different platforms. Extensive experiments across various applications and edge devices have proven the superiority of HGNAS. It can achieve up to a 10.6x speedup and an 82.5% peak memory reduction with negligible accuracy loss compared to DGCNN on ModelNet40.
引用
收藏
页码:2693 / 2707
页数:15
相关论文
共 50 条
  • [11] The OASIS walking study-<underline>O</underline>lder <underline>a</underline>dults with cognitive impairment performing <underline>sit</underline> to <underline>s</underline>tands and <underline>walking</underline> in transitional care programs: Protocol for a feasibility <underline>study</underline>
    Cumal, Alexia
    Colella, Tracey J. F.
    Puts, Martine T.
    McGilton, Katherine S.
    PLOS ONE, 2024, 19 (09):
  • [12] VIOLET: <underline>V</underline>isual Analyt<underline>i</underline>cs f<underline>o</underline>r Exp<underline>l</underline>ainable Quantum N<underline>e</underline>ural Ne<underline>t</underline>works
    Ruan, Shaolun
    Liang, Zhiding
    Guan, Qiang
    Griffin, Paul
    Wen, Xiaolin
    Lin, Yanna
    Wang, Yong
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2024, 30 (06) : 2862 - 2874
  • [13] FLoRA: A <underline>F</underline>ramework for <underline>L</underline>earning Sc<underline>o</underline>ring <underline>R</underline>ules in <underline>A</underline>utonomous Driving Planning Systems
    Xiong, Zikang
    Eappen, Joe
    Jagannathan, Suresh
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2025, 10 (04): : 4101 - 4108
  • [14] MAR: <underline>M</underline>asked Autoencoders for Efficient <underline>A</underline>ction <underline>R</underline>ecognition
    Qing, Zhiwu
    Zhang, Shiwei
    Huang, Ziyuan
    Wang, Xiang
    Wang, Yuehuan
    Lv, Yiliang
    Gao, Changxin
    Sang, Nong
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 218 - 233
  • [15] <underline>P</underline>robiotics <underline>i</underline>nfluencing <underline>r</underline>esponse of <underline>a</underline>ntibodies over <underline>t</underline>ime in <underline>s</underline>eniors after <underline>CO</underline>VID-19 <underline>v</underline>accine (PIRATES-COV): a randomised controlled trial protocol
    Pasquier, Jean-Charles
    Plourde, Melanie
    Ramanathan, Sheela
    Chaillet, N.
    Boivin, Guy
    Laforest-Lapointe, Isabelle
    Allard-Chamard, Hugues
    Baron, Genevieve
    Beaulieu, Jean-Francois
    Fulop, Tamas
    Genereux, Melissa
    Masse, Benoit
    Robitaille, Julie
    Valiquette, Louis
    Bilodeau, Sarah
    Buch, Danielle H.
    Piche, Alain
    BMJ OPEN, 2025, 15 (03):
  • [16] GNS: <underline>G</underline>raph-Based <underline>N</underline>etwork-on-Chip <underline>S</underline>hield for Early Defense Against Malicious Nodes in MPSoC
    Wang, Haoyu
    Ren, Jianjie
    Halak, Basel
    Atamli, Ahmad
    IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, 2024, 14 (03) : 483 - 494
  • [17] <underline>Mo</underline>bile heal<underline>t</underline>h <underline>bi</underline>ometrics to prescribe immediate remote physical acti<underline>v</underline>ity for enh<underline>a</underline>ncing up<underline>t</underline>ak<underline>e</underline> to <underline>c</underline>ardiac <underline>r</underline>ehabilitation (MOTIVATE-CR plus ): protocol for a randomised controlled feasibility trial
    Crozier, Anthony
    Cocks, Matthew
    Hesketh, Katie
    Miller, Gemma
    Mcgregor, Gordon
    Thomas, Laura
    Jones, Helen
    BMJ OPEN, 2024, 14 (02):
  • [18] Severity of Atelectasis during Bronchoscopy: Descriptions of a New Grading System (<underline>A</underline>telectasi<underline>s</underline> <underline>Se</underline>verity <underline>S</underline>coring <underline>S</underline>ystem-"ASSESS") and At-Risk-Lung Zones
    Khan, Asad
    Bashour, Sami
    Sabath, Bruce
    Lin, Julie
    Sarkiss, Mona
    Song, Juhee
    Sagar, Ala-Eddin S.
    Shah, Archan
    Casal, Roberto F.
    DIAGNOSTICS, 2024, 14 (02)
  • [19] A randomized multicenter trial of a chronic disease management intervention for decompensated cirrhosis. The <underline>A</underline>ustra<underline>l</underline>ian <underline>L</underline>iver <underline>F</underline>a<underline>i</underline>lur<underline>e</underline> (ALFIE) trial
    Wigg, Alan J.
    Narayana, Sumudu
    Woodman, Richard J.
    Adams, Leon A.
    Wundke, Rachel
    Chinnaratha, Mohamed A.
    Jeffrey, Gary
    Plummer, Joan-Lee
    Sheehan, Vanessa
    Tse, Edmund
    Morgan, Joanne
    Huynh, Dep
    Milner, Margery
    Stewart, Jeffrey
    Ahlensteil, Golo
    Baig, Asma
    Kaambwa, Billingsley
    Muller, Kate
    Ramachandran, Jeyamani
    HEPATOLOGY, 2024,
  • [20] Study protocol of the <underline>PE</underline>ruvian <underline>R</underline>egistry of <underline>ST</underline>-segment <underline>E</underline>levation <underline>M</underline>yocardial <underline>I</underline>nfarction II (PERSTEMI-II) study
    Chacon-Diaz, Manuel
    Hernandez-Vasquez, Akram
    Vargas-Fernandez, Rodrigo
    Bendezu-Quispe, Guido
    PLOS ONE, 2021, 16 (09):