Omics-driven hybrid dynamic modeling of bioprocesses with uncertainty estimation

被引:0
|
作者
Espinel-Rios, Sebastian [1 ,5 ]
Lopez, Jose Montan [1 ]
Avalos, Jose L. [1 ,2 ,3 ,4 ]
机构
[1] Princeton Univ, Dept Chem & Biol Engn, Princeton, NJ 08544 USA
[2] Princeton Univ, Omenn Darling Bioengn Inst, Princeton, NJ 08544 USA
[3] Princeton Univ, Andlinger Ctr Energy & Environm, Princeton, NJ 08544 USA
[4] Princeton Univ, High Meadows Environm Inst, Princeton, NJ 08544 USA
[5] Commonwealth Sci & Ind Res Org, Clayton, Vic 3168, Australia
关键词
Omics; Hybrid model; Feature selection; Dimensionality reduction; Random forests; Gaussian processes; GENOME;
D O I
10.1016/j.bej.2025.109637
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
This work presents an omics-driven modeling pipeline that integrates machine-learning tools to facilitate the dynamic modeling of multiscale biological systems. Random forests and permutation feature importance are proposed to mine omics datasets, guiding feature selection and dimensionality reduction for dynamic modeling. Continuous and differentiable machine-learning functions can be trained to link the reduced omics feature set to key components of the dynamic model, resulting in a hybrid model. As proof of concept, we apply this framework to a high-dimensional proteomics dataset of Saccharomyces cerevisiae. After identifying key intracellular proteins that correlate with cell growth, targeted dynamic experiments are designed, and key model parameters are captured as functions of the selected proteins using Gaussian processes. This approach captures the dynamic behavior of yeast strains under varying proteome profiles while estimating the uncertainty in the hybrid model's predictions. The outlined modeling framework is adaptable to other scenarios, such as integrating additional layers of omics data for more advanced multiscale biological systems, or employing alternative machine-learning methods to handle larger datasets. Overall, this study outlines a strategy for leveraging omics data to inform multiscale dynamic modeling in systems biology and bioprocess engineering.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Dynamic Modeling, Parameter Estimation, and Uncertainty Analysis in R
    Kaschek, Daniel
    Mader, Wolfgang
    Fehling-Kaschek, Mirjam
    Rosenblatt, Marcus
    Timmer, Jens
    JOURNAL OF STATISTICAL SOFTWARE, 2019, 88 (10): : 1 - 32
  • [32] Analysis of Bioprocesses. Dynamic Modeling is a Must
    Ramkrishna, Doraiswami
    Song, Hyun-Seob
    MATERIALS TODAY-PROCEEDINGS, 2016, 3 (10) : 3587 - 3599
  • [33] Hybrid dynamic flux balance modeling approach for bioprocesses: an E. coli case study
    Zahra Negahban
    Valerie Ward
    Anne Richelle
    Chris McCready
    Hector Budman
    Bioprocess and Biosystems Engineering, 2025, 48 (5) : 841 - 856
  • [34] The Omics-Driven Machine Learning Path to Cost-Effective Precision Medicine in Chronic Kidney Disease
    Lopes, Marta B.
    Coletti, Roberta
    Duranton, Flore
    Glorieux, Griet
    Campos, Mayra Alejandra Jaimes
    Klein, Julie
    Ley, Matthias
    Perco, Paul
    Sampri, Alexia
    Tur-Sinai, Aviad
    PROTEOMICS, 2025,
  • [35] A hybrid representation approach for modelling complex dynamic bioprocesses
    J. Thibault
    G. Acuña
    R. Pérez-Correa
    H. Jorquera
    P. Molin
    E. Agosin
    Bioprocess Engineering, 2000, 22 : 547 - 556
  • [36] A hybrid representation approach for modelling complex dynamic bioprocesses
    Thibault, J
    Acuña, G
    Pérez-Correa, R
    Jorquera, H
    Molin, P
    Agosin, E
    BIOPROCESS ENGINEERING, 2000, 22 (06) : 547 - 556
  • [37] A patient-derived xenograft (PDX) platform to optimize omics-driven precision medicine in bladder cancer.
    Pan, Chong-xian
    Zhang, Hongyong
    Tepper, Clifford
    Ghosh, Paramita
    Kuslak-Meyer, Sheri
    Airhart, Susan D.
    Gandara, David R.
    Liu, Edison T.
    White, Ralph deVere
    JOURNAL OF CLINICAL ONCOLOGY, 2014, 32 (15)
  • [38] Identifying metabolic shifts in Crohn's disease using' omics-driven contextualized computational metabolic network models
    Fernandes, Philip
    Sharma, Yash
    Zulqarnain, Fatima
    McGrew, Brooklyn
    Shrivastava, Aman
    Ehsan, Lubaina
    Payne, Dawson
    Dillard, Lillian
    Powers, Deborah
    Aldridge, Isabelle
    Matthews, Jason
    Kugathasan, Subra
    Fernandez, Facundo M.
    Gaul, David
    Papin, Jason A.
    Syed, Sana
    SCIENTIFIC REPORTS, 2023, 13 (01):
  • [39] Improved Algal Toxicity Test System for Robust Omics-Driven Mode-of-Action Discovery in Chlamydomonas reinhardtii
    Schade, Stefan
    Butler, Emma
    Gutsell, Steve
    Hodges, Geoff
    Colbourne, John K.
    Viant, Mark R.
    METABOLITES, 2019, 9 (05):
  • [40] Hybrid neural modeling of bioprocesses using functional link networks
    Layse H. P. Harada
    Aline C. da Costa
    Rubens Maciel Filho
    Applied Biochemistry and Biotechnology, 2002, 98-100 : 1009 - 1023