Omics-driven hybrid dynamic modeling of bioprocesses with uncertainty estimation

被引:0
|
作者
Espinel-Rios, Sebastian [1 ,5 ]
Lopez, Jose Montan [1 ]
Avalos, Jose L. [1 ,2 ,3 ,4 ]
机构
[1] Princeton Univ, Dept Chem & Biol Engn, Princeton, NJ 08544 USA
[2] Princeton Univ, Omenn Darling Bioengn Inst, Princeton, NJ 08544 USA
[3] Princeton Univ, Andlinger Ctr Energy & Environm, Princeton, NJ 08544 USA
[4] Princeton Univ, High Meadows Environm Inst, Princeton, NJ 08544 USA
[5] Commonwealth Sci & Ind Res Org, Clayton, Vic 3168, Australia
关键词
Omics; Hybrid model; Feature selection; Dimensionality reduction; Random forests; Gaussian processes; GENOME;
D O I
10.1016/j.bej.2025.109637
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
This work presents an omics-driven modeling pipeline that integrates machine-learning tools to facilitate the dynamic modeling of multiscale biological systems. Random forests and permutation feature importance are proposed to mine omics datasets, guiding feature selection and dimensionality reduction for dynamic modeling. Continuous and differentiable machine-learning functions can be trained to link the reduced omics feature set to key components of the dynamic model, resulting in a hybrid model. As proof of concept, we apply this framework to a high-dimensional proteomics dataset of Saccharomyces cerevisiae. After identifying key intracellular proteins that correlate with cell growth, targeted dynamic experiments are designed, and key model parameters are captured as functions of the selected proteins using Gaussian processes. This approach captures the dynamic behavior of yeast strains under varying proteome profiles while estimating the uncertainty in the hybrid model's predictions. The outlined modeling framework is adaptable to other scenarios, such as integrating additional layers of omics data for more advanced multiscale biological systems, or employing alternative machine-learning methods to handle larger datasets. Overall, this study outlines a strategy for leveraging omics data to inform multiscale dynamic modeling in systems biology and bioprocess engineering.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Omics-driven bioinformatics for plant lectins discovery and functional annotation - A comprehensive review
    da Silva, Ruana Carolina Cabral
    Roldan-Filho, Ricardo Salas
    de Luna-Aragao, Madson Allan
    de Oliveira Silva, Roberta Lane
    Ferreira-Neto, Jose Ribamar Costa
    da Silva, Manasses Daniel
    Benko-Iseppon, Ana Maria
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2024, 279
  • [22] Omics-Driven Biomarkers of Psoriasis: Recent Insights, Current Challenges, and Future Prospects
    Aydin, Busra
    Arga, Kazim Yalcin
    Karadag, Ayse Serap
    CLINICAL COSMETIC AND INVESTIGATIONAL DERMATOLOGY, 2020, 13 : 611 - 625
  • [23] Omics-Driven Systems Interrogation of Metabolic Dysregulation in COVID-19 Pathogenesis
    Song, Jin-Wen
    Lam, Sin Man
    Fan, Xing
    Cao, Wen-Jing
    Wang, Si-Yu
    Tian, He
    Chua, Gek Huey
    Zhang, Chao
    Meng, Fan-Ping
    Xu, Zhe
    Fu, Jun-Liang
    Huang, Lei
    Xia, Peng
    Yang, Tao
    Zhang, Shaohua
    Li, Bowen
    Jiang, Tian-Jun
    Wang, Raoxu
    Wang, Zehua
    Shi, Ming
    Zhan, Ji-Yuan
    Wang, Fu-Sheng
    Shui, Guanghou
    CELL METABOLISM, 2020, 32 (02) : 188 - +
  • [24] A Critical Analysis of the FDA's Omics-Driven Pharmacodynamic Biomarkers to Establish Biosimilarity
    Niazi, Sarfaraz K.
    PHARMACEUTICALS, 2023, 16 (11)
  • [25] 'Nocturomics': transition to omics-driven biomarkers of nocturia, a systematic review and future prospects
    Gong, Susan
    Kheir, George Bou
    Kabarriti, Abdo
    Khosla, Lakshay
    Gong, Fred
    Van Laecke, Erik
    Weiss, Jeffrey
    Everaert, Karel
    Herve, Francois
    BJU INTERNATIONAL, 2023, 131 (06) : 675 - 684
  • [26] Temperature-smart plants: A new horizon with omics-driven plant breeding
    Raza, Ali
    Bashir, Shanza
    Khare, Tushar
    Karikari, Benjamin
    Copeland, Rhys G. R.
    Jamla, Monica
    Abbas, Saghir
    Charagh, Sidra
    Nayak, Spurthi N.
    Djalovic, Ivica
    Rivero, Rosa M.
    Siddique, Kadambot H. M.
    Varshney, Rajeev K.
    PHYSIOLOGIA PLANTARUM, 2024, 176 (01)
  • [27] Omics-driven exploration and mining of key functional genes for the improvement of food and fiber crops
    Naqvi, Rubab Zahra
    Mahmood, Muhammad Arslan
    Mansoor, Shahid
    Amin, Imran
    Asif, Muhammad
    FRONTIERS IN PLANT SCIENCE, 2024, 14
  • [28] Omics-driven utilization of wild relatives for empowering pre-breeding in pearl millet
    Kapoor, Chandan
    Sankar, S. Mukesh
    Singh, S. P.
    Singh, Nirupma
    Kumar, Sudhir
    PLANTA, 2024, 259 (06)
  • [29] Omics-driven onboarding of the carotenoid producing red yeast Xanthophyllomyces dendrorhous CBS 6938
    Emma E. Tobin
    Joseph H. Collins
    Celeste B. Marsan
    Gillian T. Nadeau
    Kim Mori
    Anna Lipzen
    Stephen Mondo
    Igor V. Grigoriev
    Eric M. Young
    Applied Microbiology and Biotechnology, 2024, 108 (1)
  • [30] Omics-driven investigation of the biology underlying intrinsic submaximal working capacity and its trainability
    Hota, Monalisa
    Barber, Jacob L.
    Ruiz-Ramie, Jonathan J.
    Schwartz, Charles S.
    Lam, Do Thuy Uyen Ha
    Rao, Prashant
    Mi, Michael Y.
    Katz, Daniel H.
    Robbins, Jeremy M.
    Clish, Clary B.
    Gerszten, Robert E.
    Sarzynski, Mark A.
    Ghosh, Sujoy
    Bouchard, Claude
    PHYSIOLOGICAL GENOMICS, 2023, 55 (11) : 517 - 543