EXPERIMENTAL AND NUMERICAL INVESTIGATION ON HEAT TRANSFER AND FLOW CHARACTERISTICS OF ARRAY JET IMPINGEMENT COOLING WITH FILM EXTRACTION AT THE TURBINE SHROUD

被引:0
|
作者
Li, Guodong [1 ]
Guo, Tao [1 ,2 ]
Zeng, Fei [3 ]
Liu, Cunliang [1 ,2 ]
Li, Jiayu [1 ]
Li, Changwei [1 ]
Liu, Shanjie [1 ]
机构
[1] Northwestern Polytech Univ, Sch Power & Energy, Xian, Shaanxi, Peoples R China
[2] Shaanxi Key Lab Thermal Sci Aeroengine Syst, Xian, Shaanxi, Peoples R China
[3] AECC Hunan Aviat Powerplant Res Inst, Zhuzhou, Hunan, Peoples R China
关键词
Jet impingement cooling; Turbine shroud; 3D steady-state numerical simulation; Liquid crystal thermography; Flow and heat transfer characteristics; CIRCULAR JET; UNCERTAINTIES;
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Jet impingement cooling is applied as an effective forced convection cooling method in regions with high thermal loads. This paper investigates the application of an array jet impingement with film holes extraction system on the turbine shroud. The cooling air is first accelerated through jet holes and impinging on the internal wall. Subsequently, the spent air is discharged in perpendicular directions through film holes. The distribution of wall Nusselt number is spatially resolved through liquid crystal thermography (LCT), and the flow structure of the impinging jets is obtained by 3D steady-state numerical simulation to further analyze the mechanism of jet-enhanced heat transfer. The effect of jet Reynolds number based on the jet hole diameter, jet-to-target spacing, and jet-to-jet spacing in the X and Y direction are investigated with a parameter range of 9100 <= Re <= 19800, 6.0 <= H/D <= 12.5, 4.0 <= A/D <= 7.5, 9.0 <= C/D <= 17.0. The results show that the wall heat transfer is mainly affected by the impinging jets, wall jets, the interaction between adjacent wall jets, and film hole extraction. The jet Reynolds number does not affect the flow structure and wall heat transfer distribution. The increased momentum decay of the jet flow due to the increase in jet-to-target spacing causes the wall heat transfer to decrease monotonically. The variation of jet-to-jet spacing in the Y direction has little effect on the area-averaged Nusselt number of the target wall, but it will shift the stagnation region. While the heat transfer at the sidewall is more sensitive to the jet-to-jet spacing in the Y direction. With the decreasing of the jet-to-jet spacing in the X direction, the area occupied by the stagnation gradually increases, thus, the area-averaged Nusselt number is significantly enhanced. In addition, other heat transfer regions are also significantly enhanced due to the increased amount of cooling air.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] NUMERICAL STUDY ON FLOW AND HEAT TRANSFER CHARACTERISTICS OF JET IMPINGEMENT
    Wang, Xinjun
    Liu, Rui
    Bai, Xiaowei
    Yao, Jinling
    PROCEEDINGS OF THE ASME TURBO EXPO 2011, VOL 5, PTS A AND B, 2012, : 1155 - 1164
  • [22] Experimental Study on Effects of Aerothermal Parameters on Impingement-Film Cooling Characteristics of the Turbine Shroud
    Li, Ziqiang
    Wang, Longfei
    Mao, Junkui
    Bi, Shuai
    Lü, Chengliang
    Kung Cheng Je Wu Li Hsueh Pao/Journal of Engineering Thermophysics, 2024, 45 (05): : 1476 - 1483
  • [23] Numerical investigation of heat transfer and flow characteristics of a double-wall cooling structure: Reverse circular jet impingement
    Ahmed, Abdallah
    Wright, Edward
    Abdel-Aziz, Fawzy
    Yan, Yuying
    APPLIED THERMAL ENGINEERING, 2021, 189
  • [24] EXPERIMENTAL INVESTIGATION ON HEAT TRANSFER CHARACTERISTICS IN AN IMPINGEMENT/EFFUSION COOLING SYSTEM OF A RIBBED TURBINE CASING
    Li, Guodong
    Guo, Tao
    Qiu, Changbo
    Liu, Cunliang
    Zhu, Huiren
    Li, Jichen
    PROCEEDINGS OF ASME TURBO EXPO 2022: TURBOMACHINERY TECHNICAL CONFERENCE AND EXPOSITION, GT2022, VOL 6B, 2022,
  • [25] Flow and heat transfer in a rotating channel with impingement cooling and film extraction
    Deng, Hongwu
    Wang, Zishuo
    Wang, Jiasen
    Li, Hua
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2021, 180
  • [26] Numerical investigation of conjugate heat transfer for combined film and impingement cooling
    Zhang, Peng
    Fu, Jing-Lun
    Liu, Jian-Jun
    Kung Cheng Je Wu Li Hsueh Pao/Journal of Engineering Thermophysics, 2015, 36 (11): : 2352 - 2355
  • [27] Experimental research on heat transfer characteristics of denser jet array impingement
    College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
    Hangkong Dongli Xuebao, 2009, 6 (1264-1269):
  • [28] Numerical Investigation on Aerodynamic and Heat Transfer Characteristics of Sweeping Impingement and Film Composite Cooling Structure
    Kong X.-C.
    Zhang Z.-Q.
    Li G.-Q.
    Zhu J.-Q.
    Xu J.-L.
    Zhang Y.-F.
    Tuijin Jishu/Journal of Propulsion Technology, 2022, 43 (10):
  • [29] A Study on the Heat Flow Characteristics of Corrugated Structure for Array Jet Impingement Cooling
    Park, Chul
    Kim, Seon Ho
    Sohn, Ho-Seong
    Kim, JeongJu
    Jung, Eui Yeop
    Choi, Seok Min
    Cho, Hyung Hee
    TRANSACTIONS OF THE KOREAN SOCIETY OF MECHANICAL ENGINEERS B, 2019, 43 (04) : 297 - 305
  • [30] Experimental and numerical heat transfer investigation of an impingement jet array with V-ribs on the target plate and on the impingement plate
    Chen, Lingling
    Brakmann, Robin G. A.
    Weigand, Bernhard
    Rodriguez, Jose
    Crawford, Michael
    Poser, Rico
    INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 2017, 68 : 126 - 138