A mathematical model used for studying jet impingement cooling characteristics is established, and the rationality of the calculation model and method is confirmed by the experimental data. The CFX software is used to numerically simulate the jet impingement cooling characteristics on a gas turbine blade. The effects of various parameters, such as the arrays of impinging nozzles, the jet Reynolds number, the jet-to-jet distance, the ratio of nozzle-to-surface spacing to jet diameter Hid, and the radius of curvature of the target surface, on the flow and heat transfer characteristics of a impingement cooling process are studied. The results indicate that the impingement jets can make complex vortex in the cooling channel, the flow boundary layer is extremely thin and highly turbulent. Underneath each impingement nozzle, there will appear a low temperature area and a peak of Nusselt number on the impingement target surface, the distribution of temperature and Nusselt number on the target surface are associated with arrangement of impingement nozzles. The average Nusselt number of the in-line arrangement nozzles is higher than that of the staggered arrangement ones. With the increasing of jet Reynolds number, the velocity impinging on the target surface and Nusselt number increase. However, heat transfer of impingement cooling on target surface is not sensitive to the jet nozzles distance; the velocity impinging on the target surface and Nusselt number decrease with the increasing of the Hid value. For the curved target surface cases, the average Nusselt number of the target surface and the effect of heat transfer decreased with the increasing of curvature radius R.