Kähler-Einstein metrics on families of Fano varieties

被引:1
|
作者
Pan, Chung-Ming [1 ]
Trusiani, Antonio [2 ]
机构
[1] Simons Laufer Math Sci Inst, 17 Gauss Way, Berkeley, CA 94720 USA
[2] Chalmers Univ Technol, Chalmers Tvargata 3, S-41258 Gothenburg, Sweden
来源
关键词
KAHLER-EINSTEIN METRICS; MODULI SPACES; STABILITY; TOPOLOGY; CAPACITY; LIMITS;
D O I
10.1515/crelle-2024-0081
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a one-parameter family of & Qopf;-Fano varieties such that the central fiber admits a unique K & auml;hler-Einstein metric, we provide an analytic method to show that the neighboring fiber admits a unique K & auml;hler-Einstein metric. Our results go beyond by establishing uniform a priori estimates on the K & auml;hler-Einstein potentials along fully degenerate families of & Qopf;-Fano varieties. In addition, we show the continuous variation of these K & auml;hler-Einstein currents and establish uniform Moser-Trudinger inequalities and uniform coercivity of the Ding functionals. Central to our article is introducing and studying a notion of convergence for quasi-plurisubharmonic functions within families of normal K & auml;hler varieties. We show that the Monge-Amp & egrave;re energy is upper semi-continuous with respect to this topology, and we establish a Demailly-Koll & aacute;r result for functions with full Monge-Amp & egrave;re mass.
引用
收藏
页码:45 / 87
页数:43
相关论文
共 50 条
  • [41] Asymptotic expansions of complete Kähler-Einstein metrics with finite volume on quasi-projective manifolds
    Xumin Jiang
    Yalong Shi
    Science China Mathematics, 2022, 65 : 1953 - 1974
  • [42] Numerical Kähler-Einstein Metric on the Third del Pezzo
    Charles Doran
    Matthew Headrick
    Christopher P. Herzog
    Joshua Kantor
    Toby Wiseman
    Communications in Mathematical Physics, 2008, 282 : 357 - 393
  • [43] METRICS OF KAHLER-EINSTEIN ON THE FANO VARIETIES
    Eyssidieux, Philippe
    ASTERISQUE, 2016, (380) : 207 - 229
  • [44] Quasi-Einstein Kähler Metrics
    Henrik Pedersen
    Christina Tønnesen-Friedman
    Galliano Valent
    Letters in Mathematical Physics, 1999, 50 : 229 - 241
  • [45] Conical Kähler–Einstein Metrics Revisited
    Chi Li
    Song Sun
    Communications in Mathematical Physics, 2014, 331 : 927 - 973
  • [46] Kähler–Einstein metrics on group compactifications
    Thibaut Delcroix
    Geometric and Functional Analysis, 2017, 27 : 78 - 129
  • [47] On the Curvature of Conic Kähler–Einstein Metrics
    Claudio Arezzo
    Alberto Della Vedova
    Gabriele La Nave
    The Journal of Geometric Analysis, 2018, 28 : 265 - 283
  • [48] Cartan-Hartogs域的Khler-Einstein度量
    王安
    殷慰萍
    张利友
    ROOS Guy
    中国科学(A辑:数学), 2006, (11) : 1201 - 1233
  • [49] 锥状K?hler-Einstein度量开性定理
    张振雷
    中国科学:数学, 2019, 49 (01) : 1 - 10
  • [50] Khler-Einstein度量和Bergman度量的等价问题
    殷慰萍
    张利友
    数学年刊A辑(中文版), 2007, (04) : 545 - 556