锥状K?hler-Einstein度量开性定理

被引:1
|
作者
张振雷
机构
[1] 首都师范大学数学科学学院
关键词
锥状K?hler-Einstein度量; 开性定理; Schauder估计;
D O I
暂无
中图分类号
O189.11 [拓扑空间(空间拓扑)];
学科分类号
摘要
本文对Donaldson关于锥状K?hler-Einstein度量存在性的开性定理给一个简要介绍.
引用
收藏
页码:1 / 10
页数:10
相关论文
共 10 条
  • [1] Conic singularities metrics with prescribed Ricci curvature: General cone angles along normal crossing divisors[J] . Henri Guenancia,Mihai Paun.Journal of Differential Geometry . 2016 (1)
  • [2] The greatest Ricci lower bound, conical Einstein metrics and Chern number inequality[J] . Jian Song,Xiaowei Wang.Geometry & Topology . 2016 (1)
  • [3] K‐Stability and K?hler‐Einstein Metrics[J] . Gang Tian.Comm. Pure Appl. Math . 2015 (7)
  • [4] Conical K?hler–Einstein Metrics Revisited[J] . Chi Li,Song Sun.Communications in Mathematical Physics . 2014 (3)
  • [5] A thermodynamical formalism for Monge–Ampère equations, Moser–Trudinger inequalities and K?hler–Einstein metrics[J] . Robert J. Berman.Advances in Mathematics . 2013
  • [6] K?hler-Einstein metrics with positive scalar curvature[J] . Gang Tian.Inventiones mathematicae . 1997 (1)
  • [7] LIOUVILLE EQUATION AND SPHERICAL CONVEX POLYTOPES
    LUO, F
    TIAN, G
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 116 (04) : 1119 - 1129
  • [8] PRESCRIBING CURVATURE ON COMPACT SURFACES WITH CONICAL SINGULARITIES
    TROYANOV, M
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 324 (02) : 793 - 821
  • [9] On Calabi's conjecture for complex surfaces with positive first Chern class[J] . G. Tian.Inventiones Mathematicae . 1990 (1)
  • [10] Essays in mathematics and its applications .2 S.K. Donaldson. Springer Berlin Heidelberg . 2012