ON b-CONCATENATIONS OF TWO k-GENERALIZED FIBONACCI NUMBERS

被引:0
|
作者
Alan, M. [1 ]
Altassan, A. [2 ]
机构
[1] Yildiz Tech Univ, Dept Math, TR-34210 Istanbul, Turkiye
[2] King Abdulaziz Univ, Dept Math, Jeddah 21589, Saudi Arabia
关键词
Fibonacci number; k-generalized Fibonacci number; k-Fibonacci numbers; concatenation; linear form in logarithms; Diophantine equation; LOGARITHMS;
D O I
10.1007/s10474-025-01517-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let k >= 2 be an integer. One of the generalization of the classical Fibonacci sequence is defined by the recurrence relation F-n((k) )= F-n-1((k) )+ & ctdot;+ F-n-k((k)) for all n >= 2 with the initial values F-i((k) )= 0 for i = 2 - k,& mldr;, 0 and F-1((k)) = 1 .F-n((k)) is an order k generalization of the Fibonacci sequence and it is called k-generalized Fibonacci sequence or shortly k-Fibonacci sequence. Banks and Luca [7], among other things, determined all Fibonacci numbers which are concatenations of two Fibonacci numbers. In this paper, we consider the analogue of this problem in more general manner by taking into account the concatenations of two terms of the same sequence in base b >= 2. First, we show that there exists only finitely many such concatenations for each k >= 2 and b >= 2. Next, we completely determine all these concatenations for all k >= 2 and 2 <= b <= 10.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] k-GENERALIZED FIBONACCI NUMBERS WHICH ARE CONCATENATIONS OF TWO REPDIGITS
    Alahmadi, Adel
    Altassan, Alaa
    Luca, Florian
    Shoaib, Hatoon
    GLASNIK MATEMATICKI, 2021, 56 (01) : 29 - 46
  • [2] On b-concatenations of Padovan and Perrin numbers
    Adedji, Kouessi Norbert
    Kandhil, Neelam
    Togbe, Alain
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2024, 30 (02):
  • [3] Generalized Heisenberg algebras and k-generalized Fibonacci numbers
    Schork, Matthias
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (15) : 4207 - 4214
  • [4] On the representation of k-generalized Fibonacci and Lucas numbers
    Öcal, AA
    Tuglu, N
    Altinisik, E
    APPLIED MATHEMATICS AND COMPUTATION, 2005, 170 (01) : 584 - 596
  • [5] On the sum of the reciprocals of k-generalized Fibonacci numbers
    Alahmadi, Adel
    Luca, Florian
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2022, 30 (01): : 31 - 42
  • [6] An Equation Related to k-Generalized Fibonacci Numbers
    Marques, Diego
    Trojovsky, Pavel
    UTILITAS MATHEMATICA, 2016, 101 : 79 - 89
  • [7] The Binet formula for the k-generalized Fibonacci numbers
    Yang, Sheng-liang
    Zhang, Hui-ting
    ARS COMBINATORIA, 2014, 116 : 193 - 204
  • [8] On k-generalized Fibonacci numbers with negative indices
    Petho, Attila
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2021, 98 (3-4): : 401 - 418
  • [9] On some properties of k-generalized Fibonacci numbers
    Ozdemir, Halim
    Karakaya, Sinan
    MATHEMATICAL COMMUNICATIONS, 2024, 29 (02) : 193 - 202
  • [10] A Simplified Binet Formula for k-Generalized Fibonacci Numbers
    Dresden, Gregory P. B.
    Du, Zhaohui
    JOURNAL OF INTEGER SEQUENCES, 2014, 17 (04)