Gate-Based Quantum Simulation of Gaussian Bosonic Circuits on Exponentially Many Modes

被引:1
|
作者
Barthe, Alice [1 ,2 ,3 ]
Cerezo, M. [4 ,5 ]
Sornborger, Andrew T. [4 ]
Larocca, Martin [2 ,6 ]
Garcia-Martin, Diego [4 ]
机构
[1] CERN, CH-1211 Geneva, Switzerland
[2] Los Alamos Natl Lab, Theoret Div, Los Alamos, NM 87545 USA
[3] Leiden Univ, Inst Lorentz, NL-2333CA Leiden, Netherlands
[4] Los Alamos Natl Lab, Informat Sci, Los Alamos, NM 87545 USA
[5] Quantum Sci Ctr, Oak Ridge, TN 37931 USA
[6] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA
关键词
D O I
10.1103/PhysRevLett.134.070604
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We introduce a framework for simulating, on an (n & thorn; 1)-qubit quantum computer, the action of a Gaussian bosonic (GB) circuit on a state over 2nmodes. Specifically, we encode the initial bosonic state's expectation values over quadrature operators (and their covariance matrix) as an input qubit state. This is then evolved by a quantum circuit that effectively implements the symplectic propagators induced by the GB gates. We find families of GB circuits and initial states leading to efficient quantum simulations. For this purpose, we introduce a dictionary that maps between GB and qubit gates such that particle- (nonparticle-) preserving GB gates lead to real- (imaginary-) time evolutions at the qubit level. For the special case of particle-preserving circuits, we present a bounded-error-quantum-polynomial time (BQP)-complete GB decision problem, indicating that GB evolutions of Gaussian states on exponentially many modes are as powerful as universal quantum computers. We also perform numerical simulations of an interferometer on similar to 8 x 109 modes, illustrating the power of our framework.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Platform tailored codesign of gate-based quantum simulation
    Seetharam, Kushal
    Sels, Dries
    Demler, Eugene
    PHYSICAL REVIEW RESEARCH, 2024, 6 (03):
  • [2] Quantum Simulation of Spin Chains Coupled to Bosonic Modes with Superconducting Circuits
    Las Heras, U.
    Garcia-Alvarez, L.
    Mezzacapo, A.
    Solano, E.
    Lamata, L.
    APPLICATIONS + PRACTICAL CONCEPTUALIZATION + MATHEMATICS = FRUITFUL INNOVATION, 2016, 11 : 93 - 103
  • [3] Quantum simulation of ultrastrongly coupled bosonic modes using superconducting circuits
    Fedortchenko, S.
    Felicetti, S.
    Markovic, D.
    Jezouin, S.
    Keller, A.
    Coudreau, T.
    Huard, B.
    Milman, P.
    PHYSICAL REVIEW A, 2017, 95 (04)
  • [4] A Case for Noisy Shallow Gate-based Circuits in Quantum Machine Learning
    Selig, Patrick
    Murphy, Niall
    Sundareswaran, Ashwin R.
    Redmond, David
    Caton, Simon
    2021 INTERNATIONAL CONFERENCE ON REBOOTING COMPUTING (ICRC 2021), 2021, : 24 - 34
  • [5] Berry phase estimation in gate-based adiabatic quantum simulation
    Murta, Bruno
    Catarina, G.
    Fernandez-Rossier, J.
    PHYSICAL REVIEW A, 2020, 101 (02)
  • [6] Quantum control of bosonic modes with superconducting circuits
    Ma, Wen-Long
    Puri, Shruti
    Schoelkopf, Robert J.
    Devoret, Michel H.
    Girvin, S. M.
    Jiang, Liang
    SCIENCE BULLETIN, 2021, 66 (17) : 1789 - 1805
  • [7] Quantum Gate-Based Quantum Private Comparison
    Yan-Feng Lang
    International Journal of Theoretical Physics, 2020, 59 : 833 - 840
  • [8] Quantum Gate-Based Quantum Private Comparison
    Lang, Yan-Feng
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2020, 59 (03) : 833 - 840
  • [9] Gate-based superconducting quantum computing
    Kwon, Sangil
    Tomonaga, Akiyoshi
    Bhai, Gopika Lakshmi
    Devitt, Simon J.
    Tsai, Jaw-Shen
    JOURNAL OF APPLIED PHYSICS, 2021, 129 (04)
  • [10] Benchmarking gate-based quantum computers
    Michielsen, Kristel
    Nocon, Madita
    Willsch, Dennis
    Jin, Fengping
    Lippert, Thomas
    De Raedt, Hans
    COMPUTER PHYSICS COMMUNICATIONS, 2017, 220 : 44 - 55