Provable Preconditioned Plug-and-Play Approach for Compressed Sensing MRI Reconstruction

被引:0
|
作者
Hong, Tao [1 ]
Xu, Xiaojian [2 ]
Hu, Jason [2 ]
Fessler, Jeffrey A. [2 ]
机构
[1] Univ Michigan, Dept Radiol, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Dept Elect & Comp Engn, Ann Arbor, MI 48109 USA
基金
美国国家卫生研究院;
关键词
Magnetic resonance imaging (MRI); noncartesian sampling; reconstruction; preconditioner; plug-and-play (PnP); SHRINKAGE-THRESHOLDING ALGORITHM; POLYNOMIAL PRECONDITIONERS; IMAGE-RECONSTRUCTION; REGULARIZATION; DENOISER; CONVERGENCE; MODELS; ADMM;
D O I
10.1109/TCI.2024.3477329
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Model-based methods play a key role in the reconstruction of compressed sensing (CS) MRI. Finding an effective prior to describe the statistical distribution of the image family of interest is crucial for model-based methods. Plug-and-play (PnP) is a general framework that uses denoising algorithms as the prior or regularizer. Recent work showed that PnP methods with denoisers based on pretrained convolutional neural networks outperform other classical regularizers in CS MRI reconstruction. However, the numerical solvers for PnP can be slow for CS MRI reconstruction. This paper proposes a preconditioned PnP (P(2)nP) method to accelerate the convergence speed. Moreover, we provide proofs of the fixed-point convergence of the P(2)nP iterates. Numerical experiments on CS MRI reconstruction with non-Cartesian sampling trajectories illustrate the effectiveness and efficiency of the P(2)nP approach.
引用
收藏
页码:1476 / 1488
页数:13
相关论文
共 50 条
  • [31] Plug-and-Play Molecular Approach for Room Temperature Polariton Condensation
    Deshmukh, Prathmesh
    Satapathy, Sitakanta
    Michail, Evripidis
    Olsson, Andrew H.
    Bushati, Rezlind
    Yadav, Ravindra Kumar
    Khatoniar, Mandeep
    Chen, Junsheng
    John, George
    Laursen, Bo W.
    Flood, Amar H.
    Sfeir, Matthew Y.
    Menon, Vinod M.
    ACS PHOTONICS, 2024, 11 (02) : 348 - 355
  • [32] Toward a plug-and-play approach for active power factor correction
    Zeltser, I
    Ben-Yaakov, S
    JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2004, 13 (03) : 599 - 612
  • [33] Voltage and frequency control of islanded microgrids: a plug-and-play approach
    Riverso, Stefano
    Sarzo, Fabio
    Ferrari-Trecate, Giancarlo
    2014 IEEE INTERNATIONAL CONFERENCE ON SMART GRID COMMUNICATIONS (SMARTGRIDCOMM), 2014, : 73 - 78
  • [34] MRI Reconstruction with LassoNet and Compressed Sensing
    De Gobbis, Andrea
    Sadikov, Aleksander
    Groznik, Vida
    ARTIFICIAL INTELLIGENCE IN MEDICINE, AIME 2022, 2022, 13263 : 291 - 295
  • [35] Zero-shot reconstruction of ocean sound speed field tensors: A deep plug-and-play approach
    Li, Siyuan
    Cheng, Lei
    Fu, Xiao
    Li, Jianlong
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2024, 155 (05): : 3475 - 3489
  • [36] Statistical Penalized-likelihood CT Image Reconstruction with Plug-and-play Priors
    Van-Giang Nguyen
    Ha Dai Duong
    2023 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP, SSP, 2023, : 398 - 402
  • [37] Deep Plug-and-Play Prior for Multitask Channel Reconstruction in Massive MIMO Systems
    Wan, Weixiao
    Chen, Wei
    Wang, Shiyue
    Li, Geoffrey Ye
    Ai, Bo
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2024, 72 (07) : 4149 - 4162
  • [38] Plug-and-Play Unplugged: Optimization-Free Reconstruction Using Consensus Equilibrium
    Buzzard, Gregery T.
    Chan, Stanley H.
    Sreehari, Suhas
    Bouman, Charles A.
    SIAM JOURNAL ON IMAGING SCIENCES, 2018, 11 (03): : 2001 - 2020
  • [39] Revisit dictionary learning for video compressive sensing under the plug-and-play framework
    Yang, Qing
    Zhao, Yaping
    SEVENTH ASIA PACIFIC CONFERENCE ON OPTICS MANUFACTURE (APCOM 2021), 2022, 12166
  • [40] Revisit Dictionary Learning for Video Compressive Sensing under the Plug-and-Play Framework
    Yang, Qing
    Zhao, Yaping
    SEVENTH ASIA PACIFIC CONFERENCE ON OPTICS MANUFACTURE (APCOM 2021), 2022, 12166