Provable Preconditioned Plug-and-Play Approach for Compressed Sensing MRI Reconstruction

被引:0
|
作者
Hong, Tao [1 ]
Xu, Xiaojian [2 ]
Hu, Jason [2 ]
Fessler, Jeffrey A. [2 ]
机构
[1] Univ Michigan, Dept Radiol, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Dept Elect & Comp Engn, Ann Arbor, MI 48109 USA
基金
美国国家卫生研究院;
关键词
Magnetic resonance imaging (MRI); noncartesian sampling; reconstruction; preconditioner; plug-and-play (PnP); SHRINKAGE-THRESHOLDING ALGORITHM; POLYNOMIAL PRECONDITIONERS; IMAGE-RECONSTRUCTION; REGULARIZATION; DENOISER; CONVERGENCE; MODELS; ADMM;
D O I
10.1109/TCI.2024.3477329
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Model-based methods play a key role in the reconstruction of compressed sensing (CS) MRI. Finding an effective prior to describe the statistical distribution of the image family of interest is crucial for model-based methods. Plug-and-play (PnP) is a general framework that uses denoising algorithms as the prior or regularizer. Recent work showed that PnP methods with denoisers based on pretrained convolutional neural networks outperform other classical regularizers in CS MRI reconstruction. However, the numerical solvers for PnP can be slow for CS MRI reconstruction. This paper proposes a preconditioned PnP (P(2)nP) method to accelerate the convergence speed. Moreover, we provide proofs of the fixed-point convergence of the P(2)nP iterates. Numerical experiments on CS MRI reconstruction with non-Cartesian sampling trajectories illustrate the effectiveness and efficiency of the P(2)nP approach.
引用
收藏
页码:1476 / 1488
页数:13
相关论文
共 50 条
  • [21] Single-shot compressed ultrafast photography using a novel reconstruction algorithm based on plug-and-play frame
    Lei, Xiaoya
    Li, David U-Lei
    Wu, Shengli
    JOURNAL OF OPTICS-INDIA, 2023, 52 (01): : 332 - 338
  • [22] Image Restoration and Reconstruction using Targeted Plug-and-Play Priors
    Teodoro, Afonso M.
    Bioucas-Dias, Jose M.
    Figueiredo, Mario A. T.
    IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, 2019, 5 (04) : 675 - 686
  • [23] Compressive sensing of ECG signals using plug-and-play regularization
    Unni, V. S.
    Gavaskar, Ruturaj G.
    Chaudhury, Kunal N.
    SIGNAL PROCESSING, 2023, 202
  • [24] Scalable Network Approach for the Space Plug-and-play Architecture
    Christensen, Jacob H.
    Anderson, David B.
    Greenman, Mark E.
    Hansen, Bryan D.
    2012 IEEE AEROSPACE CONFERENCE, 2012,
  • [25] Plug-and-Play Approach to Nonadiabatic Geometric Quantum Gates
    Liu, Bao-Jie
    Song, Xue-Ke
    Xue, Zheng-Yuan
    Wang, Xin
    Yung, Man-Hong
    PHYSICAL REVIEW LETTERS, 2019, 123 (10)
  • [26] Deep plug-and-play HIO approach for phase retrieval
    Isil, Cagatay
    Oktem, Figen s.
    APPLIED OPTICS, 2025, 64 (05) : A84 - A94
  • [27] A Novel Plug-and-Play SAR Reconstruction Framework Using Deep Priors
    Alver, Muhammed Burak
    Saleem, Ammar
    Cetin, Mujdat
    2019 IEEE RADAR CONFERENCE (RADARCONF), 2019,
  • [28] Plug-and-Play Priors for Reconstruction-Based Placental Image Registration
    Xing, Jiarui
    Kamilov, Ulugbek
    Wu, Wenjie
    Wang, Yong
    Zhang, Miaomiao
    SMART ULTRASOUND IMAGING AND PERINATAL, PRETERM AND PAEDIATRIC IMAGE ANALYSIS, SUSI 2019, PIPPI 2019, 2019, 11798 : 133 - 142
  • [29] Reinforcement Learning Based Plug-and-Play Method for Hyperspectral Image Reconstruction
    Fu, Ying
    Zhang, Yingkai
    ARTIFICIAL INTELLIGENCE, CICAI 2022, PT I, 2022, 13604 : 466 - 477
  • [30] DAWSSM: A plug-and-play Drone Assisted Water Sampling and Sensing Module
    Singh, Digvijay
    Singh, Rishabh
    Ajmeria, Rahul
    Gupta, Manik
    Ponnalagu, R. N.
    IECON 2021 - 47TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2021,