Provable Preconditioned Plug-and-Play Approach for Compressed Sensing MRI Reconstruction

被引:0
|
作者
Hong, Tao [1 ]
Xu, Xiaojian [2 ]
Hu, Jason [2 ]
Fessler, Jeffrey A. [2 ]
机构
[1] Univ Michigan, Dept Radiol, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Dept Elect & Comp Engn, Ann Arbor, MI 48109 USA
基金
美国国家卫生研究院;
关键词
Magnetic resonance imaging (MRI); noncartesian sampling; reconstruction; preconditioner; plug-and-play (PnP); SHRINKAGE-THRESHOLDING ALGORITHM; POLYNOMIAL PRECONDITIONERS; IMAGE-RECONSTRUCTION; REGULARIZATION; DENOISER; CONVERGENCE; MODELS; ADMM;
D O I
10.1109/TCI.2024.3477329
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Model-based methods play a key role in the reconstruction of compressed sensing (CS) MRI. Finding an effective prior to describe the statistical distribution of the image family of interest is crucial for model-based methods. Plug-and-play (PnP) is a general framework that uses denoising algorithms as the prior or regularizer. Recent work showed that PnP methods with denoisers based on pretrained convolutional neural networks outperform other classical regularizers in CS MRI reconstruction. However, the numerical solvers for PnP can be slow for CS MRI reconstruction. This paper proposes a preconditioned PnP (P(2)nP) method to accelerate the convergence speed. Moreover, we provide proofs of the fixed-point convergence of the P(2)nP iterates. Numerical experiments on CS MRI reconstruction with non-Cartesian sampling trajectories illustrate the effectiveness and efficiency of the P(2)nP approach.
引用
收藏
页码:1476 / 1488
页数:13
相关论文
共 50 条
  • [1] On exact and robust recovery for plug-and-Play compressed sensing *
    Gavaskar, Ruturaj G.
    Athalye, Chirayu D.
    Chaudhury, Kunal N.
    SIGNAL PROCESSING, 2023, 211
  • [2] Deep Plug-and-Play Prior for Parallel MRI Reconstruction
    Yazdanpanah, Ali Pour
    Afacan, Onur
    Warfield, Simon K.
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW), 2019, : 3952 - 3958
  • [3] Provable Convergence of Plug-and-Play Priors With MMSE Denoisers
    Xu, Xiaojian
    Sun, Yu
    Liu, Jiaming
    Wohlberg, Brendt
    Kamilov, Ulugbek S.
    IEEE SIGNAL PROCESSING LETTERS, 2020, 27 : 1280 - 1284
  • [4] A Plug-and-Play Deep Denoiser Prior Model for Accelerated MRI Reconstruction
    Karaoglu, Hasan H.
    Eksioglu, Ender M.
    2022 45TH INTERNATIONAL CONFERENCE ON TELECOMMUNICATIONS AND SIGNAL PROCESSING, TSP, 2022, : 260 - 263
  • [5] Truncated Residual Based Plug-and-Play ADMM Algorithm for MRI Reconstruction
    Hou, Ruizhi
    Li, Fang
    Zhang, Guixu
    IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, 2022, 8 : 96 - 108
  • [6] Plug-and-Play ADMM for MRI Reconstruction With Convex Nonconvex Sparse Regularization
    Li, Jincheng
    Li, Jinlan
    Xie, Zhaoyang
    Zou, Jian
    IEEE ACCESS, 2021, 9 : 148315 - 148324
  • [7] Deep plug-and-play MRI reconstruction based on multiple complementary priors
    Wang, Jianmin
    Liu, Chunyan
    Zhong, Yuxiang
    Liu, Xinling
    Wang, Jianjun
    MAGNETIC RESONANCE IMAGING, 2025, 115
  • [8] Autotuning Plug-and-Play Algorithms for MRI
    Shastri, Saurav K.
    Ahmad, Rizwan
    Schniter, Philip
    2020 54TH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS, AND COMPUTERS, 2020, : 1400 - 1404
  • [9] EXPECTATION CONSISTENT PLUG-AND-PLAY FOR MRI
    Shastri, Saurav K.
    Ahmad, Rizwan
    Metzler, Christopher A.
    Schniter, Philip
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 8667 - 8671
  • [10] The application of plug-and-play ADMM framework and BM3D denoiser for compressed sensing MR image reconstruction
    Yuan, Xiaojun
    Jiang, Mingfeng
    Zhu, Lingyan
    Li, Yang
    Li, Yongming
    Wang, Pin
    Li, Tie-Qiang
    INTERNATIONAL JOURNAL OF COMPUTER APPLICATIONS IN TECHNOLOGY, 2021, 65 (04) : 304 - 315