Addressing the interface issues of all-solid-state lithium batteries by ultra-thin composite solid-state electrolyte combined with the integrated preparation technology

被引:0
|
作者
Zhao, Xiaoxue [1 ]
Wang, Chao [1 ]
Fan, Xiaomeng [2 ]
Li, Yang [1 ]
Li, Dabing [1 ]
Zhang, Yanling [1 ]
Fan, Li-Zhen [1 ]
机构
[1] Univ Sci & Technol Beijing, Inst Adv Mat & Technol, Beijing, Peoples R China
[2] Guilin Univ Technol, Sch Mat Sci & Engn, Guilin, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
composite electrolyte; high energy density; lithium metal batteries; ultra-thin solid-state electrolyte; POLYMER ELECTROLYTES;
D O I
10.1002/inf2.70012
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The interfacial engineering in solid-state lithium batteries (SSLBs) is attracting escalating attention due to the profoundly enhanced safety, energy density, and charging capabilities of future power storage technologies. Nonetheless, polymer/ceramic interphase compatibility, serious agglomeration of ceramic particles, and discontinuous ionic conduction at the electrode/electrolyte interface seriously limit Li+ transport in SSLBs and block the application and large-scale manufacturing. Hence, garnet Li7La3Zr2O12 (LLZO) nanoparticles are introduced into the polyacrylonitrile (PAN) nanofiber to fabricate a polymer-ceramic nanofiber-enhanced ultrathin SSE membrane (3D LLZO-PAN), harnessing nanofiber confinement to aggregate LLZO nanoparticles to build the continuous conduction pathway of Li+. In addition, a novel integrated electrospinning process is deliberately designed to construct tight physical contact between positive electrode/electrolyte interphases. Importantly, the synergistic effect of the PAN, polyethylene oxide (PEO), and lithium bis((trifluoromethyl)sulfonyl)azanide (LiTFSI) benefits a stable solid electrolyte interphase (SEI) layer, resulting in superior cycling performance, achieving a remarkable 1500 h cycling at 0.2 mA cm-2 in the Li|3D LLZO-PAN|Li battery. Consequently, the integrated polymer-ceramic nanofiber-enhanced SSEs simultaneously achieve the balance in ultrathin thickness (16 mu m), fast ion transport (2.9 x 10-4 S cm-1), and superior excellent interface contact (15.6 Omega). The LiNi0.8Co0.1Mn0.1O2|3D LLZO-PAN|Li batteries (2.7-4.3 V) can work over 200 cycles at 0.5 C. The pouch cells with practical LiNi0.8Co0.1Mn0.1O2||Li configuration achieve an ultrahigh energy density of 345.8 Wh kg-1 and safety performance. This work provides new strategies for the manufacturing and utilization of high-energy-density SSLBs.image
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Progress and perspective of the cathode/electrolyte interface construction in all-solid-state lithium batteries
    Su, Shiming
    Ma, Jiabin
    Zhao, Liang
    Lin, Kui
    Li, Qidong
    Lv, Shasha
    Kang, Feiyu
    He, Yan-Bing
    CARBON ENERGY, 2021, 3 (06) : 866 - 894
  • [42] Progress and perspective of the cathode/electrolyte interface construction in all-solid-state lithium batteries
    Shiming Su
    Jiabin Ma
    Liang Zhao
    Kui Lin
    Qidong Li
    Shasha Lv
    Feiyu Kang
    YanBing He
    Carbon Energy, 2021, 3 (06) : 866 - 894
  • [43] Li+ affinity ultra-thin solid polymer electrolyte for advanced all-solid-state lithium-ion battery
    Wang, Shuohan
    Li, Jian
    Li, Tengfei
    Huang, Weiguo
    Wang, Lihua
    Tao, Shengdong
    CHEMICAL ENGINEERING JOURNAL, 2023, 461
  • [44] Glassy solid-state electrolytes for all-solid-state batteries
    Wheaton, Jacob
    Olson, Madison
    Torres, Victor M., III
    Martin, Steve W.
    AMERICAN CERAMIC SOCIETY BULLETIN, 2023, 102 (01): : 24 - 31
  • [45] Synthesis and interface modification of oxide solid-state electrolyte-based all-solid-state lithium-ion batteries: Advances and perspectives
    He, Linchun
    Oh, Jin An Sam
    Chua, Jun Jie Jason
    Zhou, Henghui
    FUNCTIONAL MATERIALS LETTERS, 2021, 14 (03)
  • [46] High ion conductivity based on a polyurethane composite solid electrolyte for all-solid-state lithium batteries
    Cui, Peng
    Zhang, Qi
    Sun, Chun
    Gu, Jing
    Shu, Mengxin
    Gao, Congqiang
    Zhang, Qing
    Wei, Wei
    RSC ADVANCES, 2022, 12 (07) : 3828 - 3837
  • [47] THIN ALL-SOLID-STATE LITHIUM BATTERIES UTILIZING SOLID POLYMER ELECTROLYTE PREPARED BY PLASMA POLYMERIZATION
    OGUMI, Z
    UCHIMOTO, Y
    TAKEHARA, Z
    KANAMORI, Y
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1988, 135 (10) : 2649 - 2650
  • [48] Stable Binder Boosting Sulfide Solid Electrolyte Thin Membrane for All-Solid-State Lithium Batteries
    Zhao, Xiaolei
    Shen, Lin
    Zhang, Nini
    Yang, Jing
    Liu, Gaozhan
    Wu, Jinghua
    Yao, Xiayin
    ENERGY MATERIAL ADVANCES, 2024, 5
  • [49] Filler-Integrated Composite Polymer Electrolyte for Solid-State Lithium Batteries
    Liu, Shuailei
    Liu, Wenyi
    Ba, Deliang
    Zhao, Yongzhi
    Ye, Yihua
    Li, Yuanyuan
    Liu, Jinping
    ADVANCED MATERIALS, 2023, 35 (02)
  • [50] Designing the Interface Layer of Solid Electrolytes for All-Solid-State Lithium Batteries
    Xia, Qian
    Yuan, Shuoguo
    Zhang, Qiang
    Huang, Can
    Liu, Jun
    Jin, Hongyun
    ADVANCED SCIENCE, 2024, 11 (29)