Addressing the interface issues of all-solid-state lithium batteries by ultra-thin composite solid-state electrolyte combined with the integrated preparation technology

被引:0
|
作者
Zhao, Xiaoxue [1 ]
Wang, Chao [1 ]
Fan, Xiaomeng [2 ]
Li, Yang [1 ]
Li, Dabing [1 ]
Zhang, Yanling [1 ]
Fan, Li-Zhen [1 ]
机构
[1] Univ Sci & Technol Beijing, Inst Adv Mat & Technol, Beijing, Peoples R China
[2] Guilin Univ Technol, Sch Mat Sci & Engn, Guilin, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
composite electrolyte; high energy density; lithium metal batteries; ultra-thin solid-state electrolyte; POLYMER ELECTROLYTES;
D O I
10.1002/inf2.70012
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The interfacial engineering in solid-state lithium batteries (SSLBs) is attracting escalating attention due to the profoundly enhanced safety, energy density, and charging capabilities of future power storage technologies. Nonetheless, polymer/ceramic interphase compatibility, serious agglomeration of ceramic particles, and discontinuous ionic conduction at the electrode/electrolyte interface seriously limit Li+ transport in SSLBs and block the application and large-scale manufacturing. Hence, garnet Li7La3Zr2O12 (LLZO) nanoparticles are introduced into the polyacrylonitrile (PAN) nanofiber to fabricate a polymer-ceramic nanofiber-enhanced ultrathin SSE membrane (3D LLZO-PAN), harnessing nanofiber confinement to aggregate LLZO nanoparticles to build the continuous conduction pathway of Li+. In addition, a novel integrated electrospinning process is deliberately designed to construct tight physical contact between positive electrode/electrolyte interphases. Importantly, the synergistic effect of the PAN, polyethylene oxide (PEO), and lithium bis((trifluoromethyl)sulfonyl)azanide (LiTFSI) benefits a stable solid electrolyte interphase (SEI) layer, resulting in superior cycling performance, achieving a remarkable 1500 h cycling at 0.2 mA cm-2 in the Li|3D LLZO-PAN|Li battery. Consequently, the integrated polymer-ceramic nanofiber-enhanced SSEs simultaneously achieve the balance in ultrathin thickness (16 mu m), fast ion transport (2.9 x 10-4 S cm-1), and superior excellent interface contact (15.6 Omega). The LiNi0.8Co0.1Mn0.1O2|3D LLZO-PAN|Li batteries (2.7-4.3 V) can work over 200 cycles at 0.5 C. The pouch cells with practical LiNi0.8Co0.1Mn0.1O2||Li configuration achieve an ultrahigh energy density of 345.8 Wh kg-1 and safety performance. This work provides new strategies for the manufacturing and utilization of high-energy-density SSLBs.image
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Performance Evaluation of Composite Electrolyte with GQD for All-Solid-State Lithium Batteries
    Hwang, Sung Won
    Hong, Dae-Ki
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 74 (01): : 55 - 66
  • [22] Protecting lithium metal anode in all-solid-state batteries with a composite electrolyte
    Wen-Qing Wei
    Bing-Qiang Liu
    Yi-Qiang Gan
    Hai-Jian Ma
    Da-Wei Cui
    Rare Metals, 2021, 40 (02) : 409 - 416
  • [23] Protecting lithium metal anode in all-solid-state batteries with a composite electrolyte
    Wei, Wen-Qing
    Liu, Bing-Qiang
    Gan, Yi-Qiang
    Ma, Hai-Jian
    Cui, Da-Wei
    RARE METALS, 2021, 40 (02) : 409 - 416
  • [24] Protecting lithium metal anode in all-solid-state batteries with a composite electrolyte
    Wen-Qing Wei
    Bing-Qiang Liu
    Yi-Qiang Gan
    Hai-Jian Ma
    Da-Wei Cui
    Rare Metals, 2021, 40 : 409 - 416
  • [25] Interface Issues and Challenges in All-Solid-State Batteries: Lithium, Sodium, and Beyond
    Lou, Shuaifeng
    Zhang, Fang
    Fu, Chuankai
    Chen, Ming
    Ma, Yulin
    Yin, Geping
    Wang, Jiajun
    ADVANCED MATERIALS, 2021, 33 (06)
  • [26] Research progress on lithium anode and interface engineering of lithium/solid-state electrolyte in all-solid-state lithium metal battery
    Yang Jie
    Wang Kai
    Xu Ya-nan
    Wang Ke-jian
    Ma Yan-wei
    CAILIAO GONGCHENG-JOURNAL OF MATERIALS ENGINEERING, 2021, 49 (08): : 26 - 42
  • [27] Characterization of the Lithium/Solid Electrolyte Interface in the Presence of Nanometer-thin TiOx Layers for All-Solid-State Batteries
    Goetz, Rainer
    Pugacheva, Ekaterina
    Ahaliabadeh, Zahra
    Llanos, Princess Stephanie
    Kallio, Tanja
    Bandarenka, Aliaksandr S.
    CHEMSUSCHEM, 2024, 17 (22)
  • [28] Failure mechanisms investigation of ultra-thin composite polymer electrolyte-based solid-state lithium metal batteries
    Fan, Zengjie
    Ding, Bing
    Hu, Ben
    Li, Zhiwei
    Xiao, Dewei
    Xu, Chong
    Dou, Hui
    Zhang, Xiaogang
    ELECTROCHIMICA ACTA, 2022, 436
  • [29] A dynamic database of solid-state electrolyte (DDSE) picturing all-solid-state batteries
    Yang, Fangling
    dos Santos, Egon Campos
    Jia, Xue
    Sato, Ryuhei
    Kisu, Kazuaki
    Hashimoto, Yusuke
    Orimo, Shin-ichi
    Li, Hao
    NANO MATERIALS SCIENCE, 2024, 6 (02) : 256 - 262
  • [30] A dynamic database of solid-state electrolyte(DDSE) picturing all-solid-state batteries
    Fangling Yang
    Egon Campos dos Santos
    Xue Jia
    Ryuhei Sato
    Kazuaki Kisu
    Yusuke Hashimoto
    Shin-ichi Orimo
    Hao Li
    Nano Materials Science, 2024, 6 (02) : 256 - 262