Diagnostic performance of deep learning for infectious keratitis: a systematic review and meta-analysis

被引:0
|
作者
Ong, Zun Zheng [1 ]
Sadek, Youssef [2 ]
Qureshi, Riaz [3 ,4 ]
Liu, Su-Hsun [3 ,4 ]
Li, Tianjing [3 ,4 ]
Liu, Xiaoxuan [5 ,6 ,7 ]
Takwoingi, Yemisi [8 ]
Sounderajah, Viknesh [9 ]
Ashrafian, Hutan [9 ]
Ting, Daniel S. W. [10 ,11 ]
Mehta, Jodhbir S. [10 ,11 ]
Rauz, Saaeha [1 ,5 ]
Said, Dalia G. [12 ,13 ]
Dua, Harminder S. [12 ,13 ]
Burton, Matthew J. [14 ,15 ,16 ]
Ting, Darren S. J. [1 ,5 ,11 ,12 ]
机构
[1] Sandwell & West Birmingham NHS Trust, Birmingham & Midland Eye Ctr, Birmingham, England
[2] Univ Birmingham, Coll Med & Hlth, Birmingham Med Sch, Birmingham, England
[3] Univ Coloradom, Dept Epidemiol, Anschutz Med Campus, Aurora, CO USA
[4] Univ Coloradom, Dept Epidemiol, Anschutz Med Campus, Aurora, CO USA
[5] Univ Birmingham, Inst fl ammat & Ageing, Birmingham B15 2TT, England
[6] Univ Hosp Birmingham NHS Fdn Trust, Dept Ophthalmol, Birmingham, England
[7] Hlth Data Res UK, London, England
[8] Univ Birmingham, Dept Appl Hlth Sci, Birmingham, England
[9] Imperial Coll London, Inst Global Hlth Innovat, London, England
[10] Singapore Natl Eye Ctr, Singapore Eye Res Inst, Singapore, Singapore
[11] Duke NUS Med Sch, Ophthalmol & Visual Sci Acad Clin Program, Singapore, Singapore
[12] Univ Nottingham, Sch Med, Acad Ophthalmol, Nottingham, England
[13] Queens Med Ctr, Dept Ophthalmol, Nottingham, England
[14] London Sch Hyg & Trop Med, Int Ctr Eye Hlth, London, England
[15] UCL, Moorfields Eye Hosp NHS Fdn Trust, London, England
[16] UCL Inst Ophthalmol, London, England
基金
英国惠康基金;
关键词
Artificial fi cial intelligence; Corneal infection; Corneal ulcer; Deep learning; Infectious keratitis; Microbial keratitis; FUNGAL KERATITIS; BACTERIAL; ACCURACY; DISEASES; IMAGES;
D O I
10.1016/j.eclinm.2024.102887
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background Infectious keratitis (IK) is the leading cause of corneal blindness globally. Deep learning (DL) is an emerging tool for medical diagnosis, though its value in IK is unclear. We aimed to assess the diagnostic accuracy of DL for IK and its comparative accuracy with ophthalmologists. Methods In this systematic review and meta-analysis, we searched EMBASE, MEDLINE, and clinical registries for studies related to DL for IK published between 1974 and July 16, 2024. We performed meta-analyses using bivariate models to estimate summary sensitivities and specificities. fi cities. This systematic review was registered with PROSPERO (CRD42022348596). Findings Of 963 studies identified, fi ed, 35 studies (136,401 corneal images from >56,011 patients) were included. Most studies had low risk of bias (68.6%) and low applicability concern (91.4%) in all domains of QUADAS-2, except the index test domain. Against the reference standard of expert consensus and/or microbiological results (seven external validation studies; 10,675 images), the summary estimates (95% CI) for sensitivity and specificity fi city of DL for IK were 86.2% (71.6-93.9) - 93.9) and 96.3% (91.5-98.5). - 98.5). From 28 internal validation studies (16,059 images), summary estimates for sensitivity and specificity fi city were 91.6% (86.8-94.8) - 94.8) and 90.7% (84.8-94.5). - 94.5). Based on seven studies (4007 images), DL and ophthalmologists had comparable summary sensitivity [89.2% (82.2-93.6) - 93.6) versus 82.2% (71.5-89.5); - 89.5); P = 0.20] and specificity fi city [(93.2% (85.5-97.0) - 97.0) versus 89.6% (78.8-95.2); - 95.2); P = 0.45]. Interpretation DL models may have good diagnostic accuracy for IK and comparable performance to ophthalmologists. These fi ndings should be interpreted with caution due to the image-based analysis that did not account for potential correlation within individuals, relatively homogeneous population studies, lack of pre-specification fi cation of DL thresholds, and limited external validation. Future studies should improve their reporting, data diversity, external validation, transparency, and explainability to increase the reliability and generalisability of DL models for clinical deployment.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Diagnostic performance of ultrasound in acute cholecystitis: a systematic review and meta-analysis
    Huang, Sih-Shiang
    Lin, Kai-Wei
    Liu, Kao-Lang
    Wu, Yao-Ming
    Lien, Wan-Ching
    Wang, Hsiu-Po
    WORLD JOURNAL OF EMERGENCY SURGERY, 2023, 18 (01)
  • [42] Diagnostic Infectious Diseases Testing Outside Clinics: A Global Systematic Review and Meta-analysis
    Kpokiri, Eneyi E.
    Marley, Gifty
    Tang, Weiming
    Fongwen, Noah
    Wu, Dan
    Berendes, Sima
    Ambil, Bhavana
    Loveday, Sarah-Jane
    Sampath, Ranga
    Walker, Jennifer S.
    Matovu, Joseph K. B.
    Boehme, Catharina
    Pai, Nitika Pant
    Tucker, Joseph D.
    OPEN FORUM INFECTIOUS DISEASES, 2020, 7 (10): : 1 - 9
  • [43] Deep learning for cephalometric landmark detection: systematic review and meta-analysis
    Schwendicke, Falk
    Chaurasia, Akhilanand
    Arsiwala, Lubaina
    Lee, Jae-Hong
    Elhennawy, Karim
    Jost-Brinkmann, Paul-Georg
    Demarco, Flavio
    Krois, Joachim
    CLINICAL ORAL INVESTIGATIONS, 2021, 25 (07) : 4299 - 4309
  • [44] Deep learning for cephalometric landmark detection: systematic review and meta-analysis
    Falk Schwendicke
    Akhilanand Chaurasia
    Lubaina Arsiwala
    Jae-Hong Lee
    Karim Elhennawy
    Paul-Georg Jost-Brinkmann
    Flavio Demarco
    Joachim Krois
    Clinical Oral Investigations, 2021, 25 : 4299 - 4309
  • [45] Deep learning for temporomandibular joint arthropathies: A systematic review and meta-analysis
    Rokhshad, Rata
    Mohammad-Rahimi, Hossein
    Sohrabniya, Fatemeh
    Jafari, Bahare
    Shobeiri, Parnian
    Tsolakis, Ioannis A.
    Ourang, Seyed AmirHossein
    Sultan, Ahmed S.
    Khawaja, Shehryar Nasir
    Bavarian, Roxanne
    Palomo, Juan Martin
    JOURNAL OF ORAL REHABILITATION, 2024, 51 (08) : 1632 - 1644
  • [46] Deep learning for wireless capsule endoscopy: a systematic review and meta-analysis
    Soffer, Shelly
    Klang, Eyal
    Shimon, Orit
    Nachmias, Noy
    Eliakim, Rami
    Ben-Horin, Shomron
    Kopylov, Uri
    Barash, Yiftach
    GASTROINTESTINAL ENDOSCOPY, 2020, 92 (04) : 831 - +
  • [47] Natamycin in the treatment of fungal keratitis: a systematic review and Meta-analysis
    Qiu, Sheng
    Zhao, Gui-Qiu
    Lin, Jing
    Wang, Xue
    Hu, Li-Ting
    Du, Zhao-Dong
    Wang, Qian
    Zhu, Cheng-Cheng
    INTERNATIONAL JOURNAL OF OPHTHALMOLOGY, 2015, 8 (03) : 597 - 602
  • [48] Perspectives on the Incidence of Acanthamoeba Keratitis A Systematic Review and Meta-Analysis
    Aiello, Francesco
    Afflitto, Gabriele Gallo
    Ceccarelli, Francesca
    Turco, Maria Vittoria
    Han, Yuyi
    Amescua, Guillermo
    Dart, John K.
    Nucci, Carlo
    OPHTHALMOLOGY, 2025, 132 (02) : 206 - 218
  • [49] Natamycin in the treatment of fungal keratitis : a systematic review and Meta-analysis
    Sheng Qiu
    Gui-Qiu Zhao
    Jing Lin
    Xue Wang
    Li-Ting Hu
    Zhao-Dong Du
    Qian Wang
    Cheng-Cheng Zhu
    International Journal of Ophthalmology, 2015, 8 (03) : 597 - 602
  • [50] Systematic review and meta-analysis of the diagnostic accuracy of ultrasonography for deep vein thrombosis
    Goodacre S.
    Sampson F.
    Thomas S.
    van Beek E.
    Sutton A.
    BMC Medical Imaging, 5 (1)