Diagnostic performance of deep learning for infectious keratitis: a systematic review and meta-analysis

被引:0
|
作者
Ong, Zun Zheng [1 ]
Sadek, Youssef [2 ]
Qureshi, Riaz [3 ,4 ]
Liu, Su-Hsun [3 ,4 ]
Li, Tianjing [3 ,4 ]
Liu, Xiaoxuan [5 ,6 ,7 ]
Takwoingi, Yemisi [8 ]
Sounderajah, Viknesh [9 ]
Ashrafian, Hutan [9 ]
Ting, Daniel S. W. [10 ,11 ]
Mehta, Jodhbir S. [10 ,11 ]
Rauz, Saaeha [1 ,5 ]
Said, Dalia G. [12 ,13 ]
Dua, Harminder S. [12 ,13 ]
Burton, Matthew J. [14 ,15 ,16 ]
Ting, Darren S. J. [1 ,5 ,11 ,12 ]
机构
[1] Sandwell & West Birmingham NHS Trust, Birmingham & Midland Eye Ctr, Birmingham, England
[2] Univ Birmingham, Coll Med & Hlth, Birmingham Med Sch, Birmingham, England
[3] Univ Coloradom, Dept Epidemiol, Anschutz Med Campus, Aurora, CO USA
[4] Univ Coloradom, Dept Epidemiol, Anschutz Med Campus, Aurora, CO USA
[5] Univ Birmingham, Inst fl ammat & Ageing, Birmingham B15 2TT, England
[6] Univ Hosp Birmingham NHS Fdn Trust, Dept Ophthalmol, Birmingham, England
[7] Hlth Data Res UK, London, England
[8] Univ Birmingham, Dept Appl Hlth Sci, Birmingham, England
[9] Imperial Coll London, Inst Global Hlth Innovat, London, England
[10] Singapore Natl Eye Ctr, Singapore Eye Res Inst, Singapore, Singapore
[11] Duke NUS Med Sch, Ophthalmol & Visual Sci Acad Clin Program, Singapore, Singapore
[12] Univ Nottingham, Sch Med, Acad Ophthalmol, Nottingham, England
[13] Queens Med Ctr, Dept Ophthalmol, Nottingham, England
[14] London Sch Hyg & Trop Med, Int Ctr Eye Hlth, London, England
[15] UCL, Moorfields Eye Hosp NHS Fdn Trust, London, England
[16] UCL Inst Ophthalmol, London, England
基金
英国惠康基金;
关键词
Artificial fi cial intelligence; Corneal infection; Corneal ulcer; Deep learning; Infectious keratitis; Microbial keratitis; FUNGAL KERATITIS; BACTERIAL; ACCURACY; DISEASES; IMAGES;
D O I
10.1016/j.eclinm.2024.102887
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background Infectious keratitis (IK) is the leading cause of corneal blindness globally. Deep learning (DL) is an emerging tool for medical diagnosis, though its value in IK is unclear. We aimed to assess the diagnostic accuracy of DL for IK and its comparative accuracy with ophthalmologists. Methods In this systematic review and meta-analysis, we searched EMBASE, MEDLINE, and clinical registries for studies related to DL for IK published between 1974 and July 16, 2024. We performed meta-analyses using bivariate models to estimate summary sensitivities and specificities. fi cities. This systematic review was registered with PROSPERO (CRD42022348596). Findings Of 963 studies identified, fi ed, 35 studies (136,401 corneal images from >56,011 patients) were included. Most studies had low risk of bias (68.6%) and low applicability concern (91.4%) in all domains of QUADAS-2, except the index test domain. Against the reference standard of expert consensus and/or microbiological results (seven external validation studies; 10,675 images), the summary estimates (95% CI) for sensitivity and specificity fi city of DL for IK were 86.2% (71.6-93.9) - 93.9) and 96.3% (91.5-98.5). - 98.5). From 28 internal validation studies (16,059 images), summary estimates for sensitivity and specificity fi city were 91.6% (86.8-94.8) - 94.8) and 90.7% (84.8-94.5). - 94.5). Based on seven studies (4007 images), DL and ophthalmologists had comparable summary sensitivity [89.2% (82.2-93.6) - 93.6) versus 82.2% (71.5-89.5); - 89.5); P = 0.20] and specificity fi city [(93.2% (85.5-97.0) - 97.0) versus 89.6% (78.8-95.2); - 95.2); P = 0.45]. Interpretation DL models may have good diagnostic accuracy for IK and comparable performance to ophthalmologists. These fi ndings should be interpreted with caution due to the image-based analysis that did not account for potential correlation within individuals, relatively homogeneous population studies, lack of pre-specification fi cation of DL thresholds, and limited external validation. Future studies should improve their reporting, data diversity, external validation, transparency, and explainability to increase the reliability and generalisability of DL models for clinical deployment.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Diagnostic Test Accuracy of Deep Learning Detection of COVID-19: A Systematic Review and Meta-Analysis
    Komolafe, Temitope Emmanuel
    Cao, Yuzhu
    Nguchu, Benedictor Alexander
    Monkam, Patrice
    Olaniyi, Ebenezer Obaloluwa
    Sun, Haotian
    Zheng, Jian
    Yang, Xiaodong
    ACADEMIC RADIOLOGY, 2021, 28 (11) : 1507 - 1523
  • [32] Diagnostic performance of serum cobalamin tests: a systematic review and meta-analysis
    Willis, Cameron D.
    Elshaug, Adam G.
    Milverton, Joanne L.
    Watt, Amber M.
    Metz, Michael P.
    Hiller, Janet E.
    PATHOLOGY, 2011, 43 (05) : 472 - 481
  • [33] Diagnostic performance of peripheral arterial tonometry: A systematic review and meta-analysis
    Rattanamongkolsak, Ninlaya
    Rattanasiri, Sasivimol
    Tantrakul, Visasiri
    Numthavaj, Pawin
    JOURNAL OF SLEEP RESEARCH, 2024, 33
  • [34] Diagnostic Performance of Ultrasound in Nonpalpable Cryptorchidism: A Systematic Review and Meta-analysis
    Tasian, Gregory E.
    Copp, Hillary L.
    PEDIATRICS, 2011, 127 (01) : 119 - 128
  • [35] Diagnostic performance of radiomics in adrenal masses: A systematic review and meta-analysis
    Zhang, Hao
    Lei, Hanqi
    Pang, Jun
    FRONTIERS IN ONCOLOGY, 2022, 12
  • [36] Diagnostic performance of SPECT in lumbar spondylolysis: a systematic review and meta-analysis
    Peng, Z.
    Jia, Y.
    Li, J.
    Wang, G.
    CLINICAL RADIOLOGY, 2024, 79 (01) : e137 - e146
  • [37] Diagnostic Performance of MRI for Esophageal Carcinoma: A Systematic Review and Meta-Analysis
    Lee, Sangjune Laurence
    Yadav, Poonam
    Starekova, Jitka
    Christensen, Leslie
    Chandereng, Thevaa
    Chappell, Richard
    Reeder, Scott B.
    Bassetti, Michael F.
    RADIOLOGY, 2021, 299 (03) : 583 - 594
  • [38] The diagnostic performance of musculoskeletal ultrasound in gout: A systematic review and meta-analysis
    Zhang, Qingyu
    Gao, Fuqiang
    Sun, Wei
    Ma, Jinhui
    Cheng, Liming
    Li, Zirong
    PLOS ONE, 2018, 13 (07):
  • [39] A Systematic Review and Meta-Analysis of Diagnostic Performance of Imaging in Acute Cholecystitis
    Kiewiet, Jordy J. S.
    Leeuwenburgh, Marjolein M. N.
    Bipat, Shandra
    Bossuyt, Patrick M. M.
    Stoker, Jaap
    Boermeester, Marja A.
    RADIOLOGY, 2012, 264 (03) : 708 - 720
  • [40] Diagnostic performance of ultrasound in acute cholecystitis: a systematic review and meta-analysis
    Sih-Shiang Huang
    Kai-Wei Lin
    Kao-Lang Liu
    Yao-Ming Wu
    Wan-Ching Lien
    Hsiu-Po Wang
    World Journal of Emergency Surgery, 18