A MORDELL-LANG-TYPE PROBLEM FOR GLm

被引:0
|
作者
Bell, Jason [1 ]
Ghioca, Dragos [2 ]
Huang, Yifeng [2 ]
机构
[1] Univ Waterloo, Dept Pure Math, Waterloo, ON N2L 3G1, Canada
[2] Univ British Columbia, Dept Math, 1984 Math Rd, Vancouver, BC V6T 1Z2, Canada
关键词
finite-dimensional central simple algebras; Mordell-Lang conjecture; EQUATIONS;
D O I
10.1017/S0004972724000753
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a nonabelian variant of the classical Mordell-Lang conjecture in the context of finite- dimensional central simple algebras. We obtain the following result as a particular case of a more general statement. Let K be an algebraically closed field of characteristic zero, let B (1) , ... , B-r is an element of GL(m)(K) be matrices with multiplicatively independent eigenvalues and let V be a closed subvariety of GL(m)(K) not passing through zero. Then there exist only finitely many elements of GL(m)(K) of the form B-1(n1) <middle dot> <middle dot> <middle dot> B-r(nr) (as we vary n(1),... , ... , n(r ) in Z) lying on the subvariety V .
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Generic borne for the Mordell-Lang problem
    Rémond, G
    MANUSCRIPTA MATHEMATICA, 2005, 118 (01) : 85 - 97
  • [2] THE DYNAMICAL MORDELL-LANG PROBLEM FOR NOETHERIAN SPACES
    Bell, Jason P.
    Ghioca, Dragos
    Tucker, Thomas J.
    FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 2015, 53 (02) : 313 - 328
  • [3] THE DYNAMICAL MORDELL-LANG PROBLEM FOR ETALE MAPS
    Bell, J. P.
    Ghioca, D.
    Tucker, T. J.
    AMERICAN JOURNAL OF MATHEMATICS, 2010, 132 (06) : 1655 - 1675
  • [4] The dynamical Mordell-Lang problem for intersection of two orbits
    Rout, Sudhansu Sekhar
    JOURNAL OF NUMBER THEORY, 2020, 207 : 122 - 137
  • [5] The Mordell-Lang problem modulo certain abelian subvarieties
    Rémond, G
    Viada, E
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2003, 2003 (35) : 1915 - 1931
  • [6] Periodic points, linearizing maps, and the dynamical Mordell-Lang problem
    Ghioca, D.
    Tucker, T. J.
    JOURNAL OF NUMBER THEORY, 2009, 129 (06) : 1392 - 1403
  • [7] THE UNIFORM MORDELL–LANG CONJECTURE
    Gao, Ziyang
    Ge, Tangli
    Kühne, Lars
    arXiv, 2021,
  • [8] Infinitesimal Mordell-Lang
    Buium, A
    JOURNAL OF NUMBER THEORY, 2001, 90 (02) : 185 - 206
  • [9] A variant of the Mordell-Lang conjecture
    Ghioca, Dragos
    Hu, Fei
    Scanlon, Thomas
    Zannier, Umberto
    MATHEMATICAL RESEARCH LETTERS, 2019, 26 (05) : 1383 - 1392
  • [10] Mordell-Lang in positive characteristic
    Ziegler, Paul
    RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA, 2015, 134 : 93 - 131