Unravel melt pool and bubble dynamics during laser powder bed fusion of polyamides using synchrotron X-ray imaging and process simulation

被引:1
|
作者
Leung, Chu Lun Alex [1 ,2 ]
Gardy, Jabbar [3 ,4 ]
Isaacs, Mark [2 ,5 ]
Marathe, Shashidhara [6 ]
Klosowski, Michal M. [2 ]
Shinjo, Junji [7 ]
Panwisawas, Chinnapat [8 ]
Lee, Peter D. [1 ,2 ]
机构
[1] UCL, Dept Mech Engn, Torrington Pl, London WC1E 7JE, England
[2] Res Complex Harwell, Didcot, Oxon, England
[3] Univ Leeds, Sch Chem & Proc Engn, Leeds, England
[4] Cormica Bradford Ltd, Bradford, England
[5] UCL, Dept Chem, London, England
[6] Diamond Light Source Ltd, Didcot, Oxon, England
[7] Shimane Univ, Next Generat Tatara Cocreat Ctr NEXTA, Matsue, Japan
[8] Queen Mary Univ London, Sch Engn & Mat Sci, London, England
基金
英国工程与自然科学研究理事会;
关键词
Polyamides; bubble dynamics; high-fidelity process simulation; X-ray imaging; THERMAL-CONDUCTIVITY; ABSORPTION; MORPHOLOGY; LIGHT;
D O I
10.1080/17452759.2025.2465905
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Laser powder bed fusion (LPBF) of Polyamide 12 (PA12) using a near-infra-red (NIR) beam is largely unexplored; therefore, the beam-matter interaction, evolution mechanisms of the melt pool and defects remain unclear. Here, we employed a combination of in situ synchrotron X-ray imaging, ex situ materials characterisation techniques, and high-fidelity process simulations to study these behaviours during LPBF of PA12. Our results demonstrate that the NIR absorption of PA12 can be improved by 600 times through powder surface modification with C, P and Al species. In situ X-ray images reveal that the PA12 powders undergo melting, viscous merging, volume expansion, warping, solidification, and shrinkage before forming a solid track. Our results uncover the bubble evolution mechanisms during LPBF of PA12. During laser scanning, the high-energy laser beam produces organic substances/vapours which are trapped inside bubbles during viscous merging. These bubbles continue to shrink due to vapour condensation as the polymer cools under a cooling rate range of 200 - 600 K s-1. Using the collected data, we have developed a data-driven bubble shrinkage criterion to predict the bubble shrinkage coefficient using the bubble half-life, improving the build quality of LPBF polymeric parts.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] In Situ Analysis of Laser Powder Bed Fusion Using Simultaneous High-Speed Infrared and X-ray Imaging
    Benjamin Gould
    Sarah Wolff
    Niranjan Parab
    Cang Zhao
    Maria Cinta Lorenzo-Martin
    Kamel Fezzaa
    Aaron Greco
    Tao Sun
    JOM, 2021, 73 : 201 - 211
  • [42] In Situ Analysis of Laser Powder Bed Fusion Using Simultaneous High-Speed Infrared and X-ray Imaging
    Gould, Benjamin
    Wolff, Sarah
    Parab, Niranjan
    Zhao, Cang
    Lorenzo-Martin, Maria Cinta
    Fezzaa, Kamel
    Greco, Aaron
    Sun, Tao
    JOM, 2021, 73 (01) : 201 - 211
  • [43] In situ X-ray imaging of melt pool dynamics in underwater arc welding
    Xu, Changsheng
    Guo, Ning
    Zhang, Xin
    Jiang, Haiyue
    Chen, Hao
    Feng, Jicai
    MATERIALS & DESIGN, 2019, 179
  • [44] Particle scale modelling of powder recoating and melt pool dynamics in laser powder bed fusion additive manufacturing: A review
    Li, Erlei
    Zhou, Zongyan
    Wang, Lin
    Zou, Ruiping
    Yu, Aibing
    POWDER TECHNOLOGY, 2022, 409
  • [45] Direct observation of crack formation mechanisms with operando Laser Powder Bed Fusion X-ray imaging
    Ghasemi-Tabasi, Hossein E.
    de Formanoir, Charlotte
    Van Petegem, Steven
    Jhabvala, Jamasp
    Hocine, Samy
    Boillat, Eric
    Sohrabi, Navid
    Marone, Federica
    Grolimund, Daniel
    Van Swygenhoven, Helena
    Loge, Roland E.
    ADDITIVE MANUFACTURING, 2022, 51
  • [46] On the use of X-ray computed tomography for the improvement of metal laser powder bed fusion process monitoring
    Bonato, Nicolò
    Zanini, Filippo
    Carmignato, Simone
    e-Journal of Nondestructive Testing, 2023, 28 (03):
  • [47] Using Machine Learning to predict the melt-pool depth using structural melt pool length data in Laser Powder Bed Fusion
    Arikatla, Siva Surya Prakash Reddy
    Bai, Feiyang
    Zhang, Nian
    Gebre, Fisseha L.
    Xu, Jiajun
    8TH THERMAL AND FLUIDS ENGINEERING CONFERENCE, 2023, : 973 - 980
  • [48] An investigation into the effect of process parameters on melt pool geometry, cell spacing, and grain refinement during laser powder bed fusion
    Keshavarzkermani, Ali
    Marzbanrad, Ehsan
    Esmaeilizadeh, Reza
    Mahmoodkhani, Yahya
    Ali, Usrnan
    Enrique, Pablo D.
    Zhou, Norman Y.
    Bonakdar, Ali
    Toyserkani, Ehsan
    OPTICS AND LASER TECHNOLOGY, 2019, 116 : 83 - 91
  • [49] X-ray tomography for the advancement of laser powder bed fusion additive manufacturing
    Du Plessis, A.
    JOURNAL OF MICROSCOPY, 2022, 285 (03) : 121 - 130
  • [50] Localized keyhole pore prediction during laser powder bed fusion via multimodal process monitoring and X-ray radiography
    Gorgannejad, Sanam
    Martin, Aiden A.
    Nicolino, Jenny W.
    Strantza, Maria
    Guss, Gabriel M.
    Khairallah, Saad
    Forien, Jean-Baptiste
    Thampy, Vivek
    Liu, Sen
    Quan, Peiyu
    Tassone, Christopher J.
    Calta, Nicholas P.
    ADDITIVE MANUFACTURING, 2023, 78