Machine Learning-Driven Maintenance Order Generation in Assembly Lines

被引:0
|
作者
Princz, Gabor [1 ]
Shaloo, Masoud [1 ]
Reisacher, Fabian [1 ]
Erol, Selim [1 ]
机构
[1] Univ Appl Sci Wiener Neustadt, Johannes Gutenberg Str 3, A-2700 Wiener Neustadt, Austria
来源
IFAC PAPERSONLINE | 2024年 / 58卷 / 19期
关键词
Condition-Based Maintenance; Predictive Maintenance; Engineering Applications of Artificial Intelligence; TIME-SERIES;
D O I
10.1016/j.ifacol.2024.09.119
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The automatic generation of maintenance orders facilitates the prompt detection and root cause analysis of deviations or failures in the assembly process. The aim of this project is to use supervised learning models to recognise deviations in the throughput times of a fully automated assembly process carried out by robots. The model identifies errors, categorises their causes and transmits the information back to the Enterprise Resource Planning (ERP) system. The data collected comes from a development and test assembly station with an industrial robot. The data set from the assembly station was expanded using agent-based simulation in order to train the four models Support Vector Machine, K-Neares Neighbour, Naive Bayes and Decision Tree. The SVM model proved to be the most suitable model for automatic fault detection with an accuracy of 99.51 %. The model was integrated into the assembly station and an algorithm was developed to automatically generate maintenance messages to transmit the failure code to the ERP system.
引用
收藏
页码:139 / 144
页数:6
相关论文
共 50 条
  • [21] Machine Learning-Driven Algorithms for Network Anomaly Detection
    Islam, Md Sirajul
    Rouf, Mohammad Abdur
    Parvez, A. H. M. Shahariar
    Podder, Prajoy
    INVENTIVE COMPUTATION AND INFORMATION TECHNOLOGIES, ICICIT 2021, 2022, 336 : 493 - 507
  • [22] Deep Reinforcement Learning-Driven Scheduling in Multijob Serial Lines: A Case Study in Automotive Parts Assembly
    Lee, Sanghoon
    Kim, Jinyoung
    Wi, Gwangjin
    Won, Yuchang
    Eun, Yongsoon
    Park, Kyung-Joon
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2024, 20 (02) : 2932 - 2943
  • [23] Machine Learning-Driven Approaches for Precision Antenna Alignment
    Patel, Nimesh A.
    Rao, Ramprasad
    Christensen, Robert
    Keating, Garrett
    Laguana, Kristen
    Mills, Adam
    Ramos, Angelu
    Schimpf, Shelbi H.
    Smith, Rachel
    Yen, Sheng-Feng
    Leiker, Patrick S.
    Norton, Timothy
    SOFTWARE AND CYBERINFRASTRUCTURE FOR ASTRONOMY VIII, 2024, 13101
  • [24] Machine Learning-Driven Multiscale Modeling: Bridging the Scales with a Next-Generation Simulation Infrastructure
    Ingolfsson, Helgi I.
    Bhatia, Harsh
    Aydin, Fikret
    Oppelstrup, Tomas
    Lopez, Cesar A.
    Stanton, Liam G.
    Carpenter, Timothy S.
    Wong, Sergio
    Di Natale, Francesco
    Zhang, Xiaohua
    Moon, Joseph Y.
    Stanley, Christopher B.
    Chavez, Joseph R.
    Nguyen, Kien
    Dharuman, Gautham
    Burns, Violetta
    Shrestha, Rebika
    Goswami, Debanjan
    Gulten, Gulcin
    Van, Que N.
    Ramanathan, Arvind
    Van Essen, Brian
    Hengartner, Nicolas W.
    Stephen, Andrew G.
    Turbyville, Thomas
    Bremer, Peer-Timo
    Gnanakaran, S.
    Glosli, James N.
    Lightstone, Felice C.
    Nissley, Dwight V.
    Streitz, Frederick H.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2023, 19 (09) : 2658 - 2675
  • [26] TCLPI: Machine Learning-Driven Framework for Hybrid Learning Mode Identification
    Verma, Chaman
    Illes, Zoltan
    Kumar, Deepak
    IEEE ACCESS, 2024, 12 : 98029 - 98045
  • [27] Machine Learning-Driven Lending Decisions in Bank Consumer Finance
    Wang, Xiaoning
    Tang, Yi
    Quaranta, Anna Grazia
    INTERNATIONAL JOURNAL OF INFORMATION SYSTEMS AND SUPPLY CHAIN MANAGEMENT, 2024, 17 (01)
  • [28] Towards Machine Learning-Driven EEG Biomarkers for Precision Mental
    Wu, Wei
    INTERNATIONAL JOURNAL OF PSYCHOPHYSIOLOGY, 2021, 168 : S64 - S64
  • [29] Machine learning-driven 3D printing: A review
    Zhang, Xijun
    Chu, Dianming
    Zhao, Xinyue
    Gao, Chenyu
    Lu, Lingxiao
    He, Yan
    Bai, Wenjuan
    APPLIED MATERIALS TODAY, 2024, 39
  • [30] Machine learning-driven intelligent tire wear detection system
    Tong, Zexiang
    Cao, Yaoguang
    Wang, Rui
    Chen, Yuyi
    Li, Zhuoyang
    Lu, Jiayi
    Yang, Shichun
    MEASUREMENT, 2025, 242