Machine learning-driven intelligent tire wear detection system

被引:1
|
作者
Tong, Zexiang [1 ]
Cao, Yaoguang [1 ,2 ]
Wang, Rui [1 ]
Chen, Yuyi [1 ]
Li, Zhuoyang [1 ]
Lu, Jiayi [1 ]
Yang, Shichun [1 ]
机构
[1] Beihang Univ, Sch Transportat Sci Engn, Beijing, Peoples R China
[2] Beihang Univ, State Key Lab Intelligent Transportat Syst, Beijing, Peoples R China
基金
国家重点研发计划;
关键词
Tire wear; Accelerometers; PVDF; Signal processing and analysis; Machine learning; CLASSIFICATION;
D O I
10.1016/j.measurement.2024.115848
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Traditional methods detect wear by interpreting mathematical models and tire characteristics; however, these methods struggle to accurately reflect the actual rolling condition of the tire. In this study, we propose a machine learning-based tire wear detection module that can provide accurate results under tire test rig conditions. To develop this module, we designed three key components: integrated acceleration and PVDF sensors within the tire to capture vibration and deformation data; signal preprocessing algorithms to highlight multi-source signal differences under varying wear conditions; and deep learning algorithms to achieve precise tire wear grade identification. Experimental results demonstrate that, under different tire pressures, loads, speeds, and wear levels, the system can accurately identify tire wear grades with 99.99% accuracy by combining data from both sensors.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Machine Learning-Driven Algorithms for Network Anomaly Detection
    Islam, Md Sirajul
    Rouf, Mohammad Abdur
    Parvez, A. H. M. Shahariar
    Podder, Prajoy
    INVENTIVE COMPUTATION AND INFORMATION TECHNOLOGIES, ICICIT 2021, 2022, 336 : 493 - 507
  • [2] Machine Learning-Driven Biomaterials Evolution
    Suwardi, Ady
    Wang, FuKe
    Xue, Kun
    Han, Ming-Yong
    Teo, Peili
    Wang, Pei
    Wang, Shijie
    Liu, Ye
    Ye, Enyi
    Li, Zibiao
    Loh, Xian Jun
    ADVANCED MATERIALS, 2022, 34 (01)
  • [3] Machine Learning-Driven Language Assessment
    Settles, Burr
    LaFlair, Geoffrey T.
    Hagiwara, Masato
    TRANSACTIONS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, 2020, 8 : 247 - 263
  • [4] Machine Learning-Driven Optimization for Intrusion Detection in Smart Vehicular Networks
    Ayoub Alsarhan
    Abdel-Rahman Al-Ghuwairi
    Islam T. Almalkawi
    Mohammad Alauthman
    Ahmed Al-Dubai
    Wireless Personal Communications, 2021, 117 : 3129 - 3152
  • [5] Machine Learning-Driven Optimization for Intrusion Detection in Smart Vehicular Networks
    Alsarhan, Ayoub
    Al-Ghuwairi, Abdel-Rahman
    Almalkawi, Islam T.
    Alauthman, Mohammad
    Al-Dubai, Ahmed
    WIRELESS PERSONAL COMMUNICATIONS, 2021, 117 (04) : 3129 - 3152
  • [6] Machine Learning-Driven Detection of Cross-Site Scripting Attacks
    Alhamyani, Rahmah
    Alshammari, Majid
    INFORMATION, 2024, 15 (07)
  • [7] Machine Learning-Driven Approach for a COVID-19 Warning System
    Hussain, Mushtaq
    Islam, Akhtarul
    Turi, Jamshid Ali
    Nabi, Said
    Hamdi, Monia
    Hamam, Habib
    Ibrahim, Muhammad
    Cifci, Mehmet Akif
    Sehar, Tayyaba
    ELECTRONICS, 2022, 11 (23)
  • [8] A Machine Learning-Driven Virtual Biopsy System For Kidney Transplant Patients
    Yoo, Daniel
    Divard, Gillian
    Raynaud, Marc
    Cohen, Aaron
    Mone, Tom D.
    Rosenthal, John Thomas
    Bentall, Andrew J.
    Stegall, Mark D.
    Naesens, Maarten
    Zhang, Huanxi
    Wang, Changxi
    Gueguen, Juliette
    Kamar, Nassim
    Bouquegneau, Antoine
    Batal, Ibrahim
    Coley, Shana M.
    Gill, John S.
    Oppenheimer, Federico
    De Sousa-Amorim, Erika
    Kuypers, Dirk R. J.
    Durrbach, Antoine
    Seron, Daniel
    Rabant, Marion
    Van Huyen, Jean-Paul Duong
    Campbell, Patricia
    Shojai, Soroush
    Mengel, Michael
    Bestard, Oriol
    Basic-Jukic, Nikolina
    Juric, Ivana
    Boor, Peter
    Cornell, Lynn D.
    Alexander, Mariam P.
    Coates, P. Toby
    Legendre, Christophe
    Reese, Peter P.
    Lefaucheur, Carmen
    Aubert, Olivier
    Loupy, Alexandre
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [9] A Machine Learning-Driven Interactive Training System for Extreme Vocal Techniques
    Holzinger, Johanna
    Heimerl, Alexander
    Schlagowski, Ruben
    Andre, Elisabeth
    Mertes, Silvan
    PROCEEDINGS OF THE 19TH INTERNATIONAL AUDIO MOSTLY CONFERENCE, AM 2024, 2024, : 348 - 354
  • [10] Direct tire slip ratio estimation using intelligent tire system and machine learning algorithms
    Xu, Nan
    Tang, Zepeng
    Askari, Hassan
    Zhou, Jianfeng
    Khajepour, Amir
    Mechanical Systems and Signal Processing, 2022, 175