Machine learning-driven intelligent tire wear detection system

被引:1
|
作者
Tong, Zexiang [1 ]
Cao, Yaoguang [1 ,2 ]
Wang, Rui [1 ]
Chen, Yuyi [1 ]
Li, Zhuoyang [1 ]
Lu, Jiayi [1 ]
Yang, Shichun [1 ]
机构
[1] Beihang Univ, Sch Transportat Sci Engn, Beijing, Peoples R China
[2] Beihang Univ, State Key Lab Intelligent Transportat Syst, Beijing, Peoples R China
基金
国家重点研发计划;
关键词
Tire wear; Accelerometers; PVDF; Signal processing and analysis; Machine learning; CLASSIFICATION;
D O I
10.1016/j.measurement.2024.115848
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Traditional methods detect wear by interpreting mathematical models and tire characteristics; however, these methods struggle to accurately reflect the actual rolling condition of the tire. In this study, we propose a machine learning-based tire wear detection module that can provide accurate results under tire test rig conditions. To develop this module, we designed three key components: integrated acceleration and PVDF sensors within the tire to capture vibration and deformation data; signal preprocessing algorithms to highlight multi-source signal differences under varying wear conditions; and deep learning algorithms to achieve precise tire wear grade identification. Experimental results demonstrate that, under different tire pressures, loads, speeds, and wear levels, the system can accurately identify tire wear grades with 99.99% accuracy by combining data from both sensors.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] The Sound of Surveillance: Enhancing Machine Learning-Driven Drone Detection with Advanced Acoustic Augmentation
    Kuemmritz, Sebastian
    DRONES, 2024, 8 (03)
  • [22] MACHINE LEARNING-DRIVEN TEMPORAL SUBPHENOTYPES OF EARLY SEPSIS
    Ahamed, Younus
    Smith, Gordon
    Kumar, Gagan
    Nadkarni, Girish
    Adjeroh, Donald
    Sakhuja, Ankit
    CRITICAL CARE MEDICINE, 2024, 52
  • [23] Machine learning-driven structure prediction for iron hydrides
    Tahmasbi, Hossein
    Ramakrishna, Kushal
    Lokamani, Mani
    Cangi, Attila
    PHYSICAL REVIEW MATERIALS, 2024, 8 (03):
  • [24] Machine learning-driven credit risk: a systemic review
    Shi, Si
    Tse, Rita
    Luo, Wuman
    D'Addona, Stefano
    Pau, Giovanni
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (17): : 14327 - 14339
  • [25] Machine learning-driven credit risk: a systemic review
    Si Shi
    Rita Tse
    Wuman Luo
    Stefano D’Addona
    Giovanni Pau
    Neural Computing and Applications, 2022, 34 : 14327 - 14339
  • [26] Machine Learning-Driven Methods for Nanobody Affinity Prediction
    Feng, Hua
    Sun, Xuefeng
    Li, Ning
    Xu, Qian
    Li, Qin
    Zhang, Shenli
    Xing, Guangxu
    Zhang, Gaiping
    Wang, Fangyu
    ACS OMEGA, 2024, 9 (48): : 47893 - 47902
  • [27] Machine learning-driven detection of anomalies in manufactured parts from resonance frequency signatures
    Zhang, Lufan
    Askar, Shavan
    Alkhayyat, Ahmad
    Samavatian, Majid
    Samavatian, Vahid
    NONDESTRUCTIVE TESTING AND EVALUATION, 2024,
  • [28] Machine Learning-Driven Automated Scanning Probe Microscopy
    Liu, Yongtao
    Vasudevan, Rama
    Kelley, Kyle
    Ziatdinov, Maxim
    Kalinin, Sergei
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2023, 79 : A62 - A62
  • [29] Machine learning-driven algorithms for the container relocation problem
    Zhang, Canrong
    Guan, Hao
    Yuan, Yifei
    Chen, Weiwei
    Wu, Tao
    TRANSPORTATION RESEARCH PART B-METHODOLOGICAL, 2020, 139 (102-131) : 102 - 131
  • [30] Machine learning-driven critical care decision making
    Coates, James T.
    de Koning, Christiaan
    JOURNAL OF THE ROYAL SOCIETY OF MEDICINE, 2022, 115 (06) : 236 - 238