Optimizing Remote Sensing Data and Light Use Efficiency Model for Accurate Gross Primary Production Estimation in African Rangelands

被引:0
|
作者
Pal, Mahendra K. [1 ]
Ardo, Jonas [1 ]
Eklundh, Lars [1 ]
Cai, Zhanzhang [1 ]
Tagesson, Torbern [1 ]
Wieckowski, Aleksander [1 ]
Buitenwerf, Robert [2 ]
Davison, Charles [2 ]
Grobler, Donvan [3 ]
Hunk, Michael [4 ]
Senty, Paul [6 ]
Brummer, Christian [5 ]
Feig, Gregor [6 ]
vanZyl, Pieter [7 ]
Griffiths, Patrick [8 ]
机构
[1] Lund Univ, Dept Phys Geog & Ecosyst Sci, Solvegatan 12, S-22362 Lund, Sweden
[2] Aarhus Univ, Dept Biol Ecoinformat & Biodivers, Ny Munkegade 116,Bldg 1540, DK-8000 Aarhus C, Denmark
[3] GeoVille Informat Syst & Data Proc GmbH, A-6020 Innsbruck, Tyrol, Austria
[4] DHI AS, DHI Water Environm Hlth, Abogade 15, DK-8200 Aarhus N, Denmark
[5] Thunen Inst Climate Smart Agr, D-38116 Braunschweig, Germany
[6] South African Environm Observat Network SAEON, POB 2600, ZA-0001 Pretoria, South Africa
[7] North West Univ, Fac Nat & Agr Sci, Sch Phys & Chem Sci, Private Bag X6001, ZA-2520 Potchefstroom, South Africa
[8] European Space Agcy ESRIN, Dept Earth Observat Sci Applicat & Climate, Via Galileo Galilei 1, I-00044 Rome, Italy
关键词
Remote Sensing; GPP; Sentinel; 2; LUE-Model; African Rangelands; SATELLITE; RADIATION;
D O I
10.1109/IGARSS53475.2024.10640791
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
This paper focuses on the meticulous selection of optimal remote sensing and climate datasets for Gross Primary Productivity (GPP) estimation in African rangelands. Utilizing Eddy Covariance Flux Tower data, we refine data selection and employ a Light Use Efficiency (LUE) model, with Sentinel 2 for photosynthetically active vegetation quantification, MODIS for Photosynthetically Active Radiation (PARin), and ERA5 Land reanalysis for climatic variables. The Eddy Covariance-based LUE-GPP model is identified as superior compare to other LUE based GPP models and further enhanced through fine-tuning LUEmax and climate scalars. Footprint analysis determines a 500m footprint size, aligning with literature recommendations. Comparative analyses with various LUE models reveal EC-LUE's superiority. Statistical validations affirm key parameter selections, leading to a reliable LUE-based GPP model tailored for African rangelands. The proposed model contributes to accurate GPP assessment, essential for informed environmental stewardship in these critical ecosystems.
引用
收藏
页码:4289 / 4293
页数:5
相关论文
共 50 条
  • [41] Comparison of multiple models for estimating gross primary production using remote sensing data and fluxnet observations
    Wang, Sisi
    Mo, Xingguo
    REMOTE SENSING AND GIS FOR HYDROLOGY AND WATER RESOURCES, 2015, 368 : 75 - 80
  • [42] Estimation of net primary productivity by integrating remote sensing data with an ecosystem model
    Hazarika, MK
    Yasuoka, Y
    Ito, A
    Dye, D
    REMOTE SENSING OF ENVIRONMENT, 2005, 94 (03) : 298 - 310
  • [43] ESTIMATION OF FOREST GROSS PRIMARY PRODUCTIVITY IN NORTH-EAST CHINA BY A PHYSIOLOGICALLY-BASED MODEL DRIVEN WITH REMOTE SENSING DATA
    Liu, Yanan
    Gong, Weishu
    Hu, Xiangyun
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 7375 - 7378
  • [44] Remote sensing of tundra gross ecosystem productivity and light use efficiency under varying temperature and moisture conditions
    Huemmrich, K. F.
    Gamon, J. A.
    Tweedie, C. E.
    Oberbauer, S. F.
    Kinoshita, G.
    Houston, S.
    Kuchy, A.
    Hollister, R. D.
    Kwon, H.
    Mano, M.
    Harazono, Y.
    Webber, P. J.
    Oechel, W. C.
    REMOTE SENSING OF ENVIRONMENT, 2010, 114 (03) : 481 - 489
  • [45] P-model v1.0: an optimality -based light use efficiency model for simulating ecosystem gross primary production
    Stocker, Benjamin D.
    Wang, Han
    Smith, Nicholas G.
    Harrison, Sandy P.
    Keenan, Trevor F.
    Sandoval, David
    Davis, Tyler
    Prentice, I. Colin
    GEOSCIENTIFIC MODEL DEVELOPMENT, 2020, 13 (03) : 1545 - 1581
  • [46] Deriving maximal light use efficiency from coordinated flux measurements and satellite data for regional gross primary production modeling
    Wang, Hesong
    Jia, Gensuo
    Fu, Congbin
    Feng, Jinming
    Zhao, Tianbao
    Ma, Zhuguo
    REMOTE SENSING OF ENVIRONMENT, 2010, 114 (10) : 2248 - 2258
  • [47] Optimizing Irrigation Water Use Efficiency for Tomato and Maize Fields across Italy Combining Remote Sensing Data and the AquaCrop Model
    Corbari, Chiara
    Ben Charfi, Imen
    Mancini, Marco
    HYDROLOGY, 2021, 8 (01)
  • [48] Effects of satellite spatial resolution on Gross Primary Productivity estimation through Light Use Efficiency modeling
    Vanikiotis, Theofilos
    Stagakis, Stavros
    Kyparissis, Aris
    SIXTH INTERNATIONAL CONFERENCE ON REMOTE SENSING AND GEOINFORMATION OF THE ENVIRONMENT (RSCY2018), 2018, 10773
  • [49] A Radiation-Regulated Dynamic Maximum Light Use Efficiency for Improving Gross Primary Productivity Estimation
    Xie, Zhiying
    Zhao, Cenliang
    Zhu, Wenquan
    Zhang, Hui
    Fu, Yongshuo H.
    REMOTE SENSING, 2023, 15 (05)
  • [50] Coupling a light use efficiency model with a machine learning-based water constraint for predicting grassland gross primary production
    Yu, Ruiyang
    Yao, Yunjun
    Tang, Qingxin
    Shao, Changliang
    Fisher, Joshua B.
    Chen, Jiquan
    Jia, Kun
    Zhang, Xiaotong
    Li, Yufu
    Shang, Ke
    Yang, Junming
    Liu, Lu
    Zhang, Xueyi
    Guo, Xiaozheng
    Xie, Zijing
    Ning, Jing
    Fan, Jiahui
    Zhang, Lilin
    AGRICULTURAL AND FOREST METEOROLOGY, 2023, 341