Optimizing Remote Sensing Data and Light Use Efficiency Model for Accurate Gross Primary Production Estimation in African Rangelands

被引:0
|
作者
Pal, Mahendra K. [1 ]
Ardo, Jonas [1 ]
Eklundh, Lars [1 ]
Cai, Zhanzhang [1 ]
Tagesson, Torbern [1 ]
Wieckowski, Aleksander [1 ]
Buitenwerf, Robert [2 ]
Davison, Charles [2 ]
Grobler, Donvan [3 ]
Hunk, Michael [4 ]
Senty, Paul [6 ]
Brummer, Christian [5 ]
Feig, Gregor [6 ]
vanZyl, Pieter [7 ]
Griffiths, Patrick [8 ]
机构
[1] Lund Univ, Dept Phys Geog & Ecosyst Sci, Solvegatan 12, S-22362 Lund, Sweden
[2] Aarhus Univ, Dept Biol Ecoinformat & Biodivers, Ny Munkegade 116,Bldg 1540, DK-8000 Aarhus C, Denmark
[3] GeoVille Informat Syst & Data Proc GmbH, A-6020 Innsbruck, Tyrol, Austria
[4] DHI AS, DHI Water Environm Hlth, Abogade 15, DK-8200 Aarhus N, Denmark
[5] Thunen Inst Climate Smart Agr, D-38116 Braunschweig, Germany
[6] South African Environm Observat Network SAEON, POB 2600, ZA-0001 Pretoria, South Africa
[7] North West Univ, Fac Nat & Agr Sci, Sch Phys & Chem Sci, Private Bag X6001, ZA-2520 Potchefstroom, South Africa
[8] European Space Agcy ESRIN, Dept Earth Observat Sci Applicat & Climate, Via Galileo Galilei 1, I-00044 Rome, Italy
关键词
Remote Sensing; GPP; Sentinel; 2; LUE-Model; African Rangelands; SATELLITE; RADIATION;
D O I
10.1109/IGARSS53475.2024.10640791
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
This paper focuses on the meticulous selection of optimal remote sensing and climate datasets for Gross Primary Productivity (GPP) estimation in African rangelands. Utilizing Eddy Covariance Flux Tower data, we refine data selection and employ a Light Use Efficiency (LUE) model, with Sentinel 2 for photosynthetically active vegetation quantification, MODIS for Photosynthetically Active Radiation (PARin), and ERA5 Land reanalysis for climatic variables. The Eddy Covariance-based LUE-GPP model is identified as superior compare to other LUE based GPP models and further enhanced through fine-tuning LUEmax and climate scalars. Footprint analysis determines a 500m footprint size, aligning with literature recommendations. Comparative analyses with various LUE models reveal EC-LUE's superiority. Statistical validations affirm key parameter selections, leading to a reliable LUE-based GPP model tailored for African rangelands. The proposed model contributes to accurate GPP assessment, essential for informed environmental stewardship in these critical ecosystems.
引用
收藏
页码:4289 / 4293
页数:5
相关论文
共 50 条
  • [21] Estimating Forest Gross Primary Production Using Machine Learning, Light Use Efficiency Model, and Global Eddy Covariance Data
    Tian, Zhenkun
    Fu, Yingying
    Zhou, Tao
    Yi, Chuixiang
    Kutter, Eric
    Zhang, Qin
    Krakauer, Nir Y.
    FORESTS, 2024, 15 (09):
  • [22] Impacts of light use efficiency and fPAR parameterization on gross primary production modeling
    Cheng, Yen-Ben
    Zhang, Qingyuan
    Lyapustin, Alexei I.
    Wang, Yujie
    Middleton, Elizabeth M.
    AGRICULTURAL AND FOREST METEOROLOGY, 2014, 189 : 187 - 197
  • [23] A leaf age-dependent light use efficiency model for remote sensing the gross primary productivity seasonality over pantropical evergreen broadleaved forests
    Tian, Jie
    Yang, Xueqin
    Yuan, Wenping
    Lin, Shangrong
    Han, Liusheng
    Zheng, Yi
    Xia, Xiaosheng
    Liu, Liyang
    Wang, Mei
    Zheng, Wei
    Fan, Lei
    Yan, Kai
    Chen, Xiuzhi
    GLOBAL CHANGE BIOLOGY, 2024, 30 (08)
  • [24] Monitoring paddy rice crops through remote sensing: productivity estimation by light use efficiency model
    Boschetti, M
    Mauri, E
    Gadda, C
    Busetto, L
    Confalonieri, R
    Bocchi, S
    Brivio, PA
    REMOTE SENSING FOR AGRICULTURE, ECOSYSTEMS, AND HYDROLOGY VI, 2004, 5568 : 46 - 56
  • [25] Deriving a light use efficiency model from eddy covariance flux data for predicting daily gross primary production across biomes
    Yuan, Wenping
    Liu, Shuguang
    Zhou, Guangsheng
    Zhou, Guoyi
    Tieszen, Larry L.
    Baldocchi, Dennis
    Bernhofer, Christian
    Gholz, Henry
    Goldstein, Allen H.
    Goulden, Michael L.
    Hollinger, David Y.
    Hu, Yueming
    Law, Beverly E.
    Stoy, Paul C.
    Vesala, Tirno
    Wofsy, Steven C.
    AGRICULTURAL AND FOREST METEOROLOGY, 2007, 143 (3-4) : 189 - 207
  • [26] Daily estimation of gross primary production under all sky using a light use efficiency model coupled with satellite passive microwave measurements
    Wang, Yipu
    Li, Rui
    Hu, Jiheng
    Fu, Yuyun
    Duan, Jiawei
    Cheng, Yuanxi
    REMOTE SENSING OF ENVIRONMENT, 2021, 267
  • [27] A REVISED TWO-LEAF LIGHT USE EFFICIENCY MODEL FOR IMPROVING GROSS PRIMARY PRODUCTION ESTIMATION AT A TROPICAL EVERGREEN BROADLEAVED FOREST SITE
    Huang, Lingxiao
    Liu, Meng
    Jiang, Yazhen
    Tang, Ronglin
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 7153 - 7155
  • [28] Estimation of Global Cropland Gross Primary Production from Satellite Observations by Integrating Water Availability Variable in Light-Use-Efficiency Model
    Du, Dandan
    Zheng, Chaolei
    Jia, Li
    Chen, Qiting
    Jiang, Min
    Hu, Guangcheng
    Lu, Jing
    REMOTE SENSING, 2022, 14 (07)
  • [29] Heterogeneity of light use efficiency in a northern Wisconsin forest: implications for modeling net primary production with remote sensing
    Ahl, DE
    Gower, ST
    Mackay, DS
    Burrows, SN
    Norman, JM
    Diak, GR
    REMOTE SENSING OF ENVIRONMENT, 2004, 93 (1-2) : 168 - 178
  • [30] Seasonal variation in aboveground production and radiation-use efficiency of temperate rangelands estimated through remote sensing
    Piñeiro, G
    Oesterheld, M
    Paruelo, JM
    ECOSYSTEMS, 2006, 9 (03) : 357 - 373