CZT-based photon-counting-detector CT with deep-learning reconstruction: image quality and diagnostic confidence for lung tumor assessment

被引:0
|
作者
Sasaki, Tomoaki [1 ]
Kuno, Hirofumi [1 ]
Nomura, Keiichi [2 ]
Muramatsu, Yoshihisa [1 ]
Aokage, Keiju [3 ]
Samejima, Joji [3 ]
Taki, Tetsuro [4 ]
Goto, Eisuke [3 ]
Wakabayashi, Masashi [5 ]
Furuya, Hideki [5 ]
Taguchi, Hiroki [6 ]
Kobayashi, Tatsushi [1 ]
机构
[1] Natl Canc Ctr Hosp East, Dept Diag Radiol, 6-5-1 Kashiwanoha, Kashiwa, Chiba 2778577, Japan
[2] Natl Canc Ctr Hosp East, Dept Med Informat, 6-5-1 Kashiwanoha, Kashiwa, Chiba 2778577, Japan
[3] Natl Canc Ctr Hosp East, Dept Thorac Surg, 6-5-1 Kashiwanoha, Kashiwa, Chiba 2778577, Japan
[4] Natl Canc Ctr Hosp East, Dept Pathol & Clin Labs, 6-5-1 Kashiwanoha, Kashiwa, Chiba 2778577, Japan
[5] Natl Canc Ctr Hosp East, Clin Res Support Off, 6-5-1 Kashiwanoha, Kashiwa, Chiba 2778577, Japan
[6] Canon Med Syst Corp, 1385 Shimoishigami, Otawara, Tochigi 3248550, Japan
关键词
Cadmium-zinc-telluride; Computed tomography; Lung tumor; Photon-counting detector;
D O I
10.1007/s11604-025-01759-9
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose This is a preliminary analysis of one of the secondary endpoints in the prospective study cohort. The aim of this study is to assess the image quality and diagnostic confidence for lung cancer of CT images generated by using cadmium-zinc-telluride (CZT)-based photon-counting-detector-CT (PCD-CT) and comparing these super-high-resolution (SHR) images with conventional normal-resolution (NR) CT images. Materials and methods Twenty-five patients (median age 75 years, interquartile range 66-78 years, 18 men and 7 women) with 29 lung nodules overall (including two patients with 4 and 2 nodules, respectively) were enrolled to undergo PCD-CT. Three types of images were reconstructed: a 512 x 512 matrix with adaptive iterative dose reduction 3D (AIDR 3D) as the NRAIDR3D image, a 1024 x 1024 matrix with AIDR 3D as the SHRAIDR3D image, and a 1024 x 1024 matrix with deep-learning reconstruction (DLR) as the SHRDLR image. For qualitative analysis, two radiologists evaluated the matched reconstructed series twice (NRAIDR3D vs. SHRAIDR3D and SHRAIDR3D vs. SHRDLR) and scored the presence of imaging findings, such as spiculation, lobulation, appearance of ground-glass opacity or air bronchiologram, image quality, and diagnostic confidence, using a 5-point Likert scale. For quantitative analysis, contrast-to-noise ratios (CNRs) of the three images were compared. Results In the qualitative analysis, compared to NRAIDR3D, SHRAIDR3D yielded higher image quality and diagnostic confidence, except for image noise (all P < 0.01). In comparison with SHRAIDR3D, SHRDLR yielded higher image quality and diagnostic confidence (all P < 0.01). In the quantitative analysis, CNRs in the modified NRAIDR3D and SHRDLR groups were higher than those in the SHRAIDR3D group (P = 0.003, <0.001, respectively). Conclusion In PCD-CT, SHRDLR images provided the highest image quality and diagnostic confidence for lung tumor evaluation, followed by SHRAIDR3D and NRAIDR3D images. DLR demonstrated superior noise reduction compared to other reconstruction methods.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Comparison of image quality of two versions of deep-learning image reconstruction algorithm on a rapid kV-switching CT: a phantom study
    Dabli, Djamel
    Loisy, Maeliss
    Frandon, Julien
    de Oliveira, Fabien
    Meerun, Azhar Mohamad
    Guiu, Boris
    Beregi, Jean-Paul
    Greffier, Joel
    EUROPEAN RADIOLOGY EXPERIMENTAL, 2023, 7 (01)
  • [42] Impact of an artificial intelligence deep-learning reconstruction algorithm for CT on image quality and potential dose reduction: A phantom study
    Greffier, Joel
    Si-Mohamed, Salim
    Frandon, Julien
    Loisy, Maeliss
    de Oliveira, Fabien
    Beregi, Jean Paul
    Dabli, Djamel
    MEDICAL PHYSICS, 2022, 49 (08) : 5052 - 5063
  • [43] Deep-learning reconstruction enhances image quality of Adamkiewicz Artery in low-keV dual-energy CT
    Tatsugami, Fuminari
    Higaki, Toru
    Kawashita, Ikuo
    Fujioka, Chikako
    Nakamura, Yuko
    Takahashi, Shinya
    Awai, Kazuo
    ACTA RADIOLOGICA, 2024, : 1569 - 1575
  • [44] Comparison of image quality of two versions of deep-learning image reconstruction algorithm on a rapid kV-switching CT: a phantom study
    Djamel Dabli
    Maeliss Loisy
    Julien Frandon
    Fabien de Oliveira
    Azhar Mohamad Meerun
    Boris Guiu
    Jean-Paul Beregi
    Joël Greffier
    European Radiology Experimental, 7
  • [45] Sinogram-based deep learning image reconstruction technique in abdominal CT: image quality considerations
    Anushri Parakh
    Jinjin Cao
    Theodore T. Pierce
    Michael A. Blake
    Cristy A. Savage
    Avinash R. Kambadakone
    European Radiology, 2021, 31 : 8342 - 8353
  • [46] Improved image quality in CT pulmonary angiography using deep learning-based image reconstruction
    Ann-Christin Klemenz
    Lasse Albrecht
    Mathias Manzke
    Antonia Dalmer
    Benjamin Böttcher
    Alexey Surov
    Marc-André Weber
    Felix G. Meinel
    Scientific Reports, 14
  • [47] Improved image quality in CT pulmonary angiography using deep learning-based image reconstruction
    Klemenz, Ann-Christin
    Albrecht, Lasse
    Manzke, Mathias
    Dalmer, Antonia
    Boettcher, Benjamin
    Surov, Alexey
    Weber, Marc-Andre
    Meinel, Felix G.
    SCIENTIFIC REPORTS, 2024, 14 (01)
  • [48] Sinogram-based deep learning image reconstruction technique in abdominal CT: image quality considerations
    Parakh, Anushri
    Cao, Jinjin
    Pierce, Theodore T.
    Blake, Michael A.
    Savage, Cristy A.
    Kambadakone, Avinash R.
    EUROPEAN RADIOLOGY, 2021, 31 (11) : 8342 - 8353
  • [49] Magnetic Bead Conjugated Lung Tumor Cell Binding Efficiency Assessment Based on Deep-Learning Approach
    Phan, Hoang Anh
    Thi, Anh Nguyen
    Dang, Nguyen Pham
    Vu-Dinh, Hien
    Dang, Bao Lam
    Bui, Tung Thanh
    Jen, Chun-Ping
    Quang, Loc Do
    Nguyen, Hai Hoang
    Duc, Trinh Chu
    2023 1ST INTERNATIONAL CONFERENCE ON HEALTH SCIENCE AND TECHNOLOGY, ICHST 2023, 2023,
  • [50] Improving Image Quality and Nodule Characterization in Ultra-low-dose Lung CT with Deep Learning Image Reconstruction
    Ma, Guangming
    Dou, Yuequn
    Dang, Shan
    Yu, Nan
    Guo, Yanbing
    Han, Dong
    Fan, Qiuju
    ACADEMIC RADIOLOGY, 2024, 31 (07) : 2944 - 2952