Lasing of Quantum-Dot Micropillar Lasers Under Elevated Temperatures

被引:0
|
作者
Babichev, Andrey [1 ]
Makhov, Ivan [2 ]
Kryzhanovskaya, Natalia [2 ]
Blokhin, Alexey [1 ]
Zadiranov, Yuri [1 ]
Salii, Yulia [1 ]
Kulagina, Marina [1 ]
Bobrov, Mikhail [1 ]
Vasil'ev, Alexey [1 ]
Blokhin, Sergey [1 ]
Maleev, Nikolay [1 ]
Tchernycheva, Maria [3 ]
Karachinsky, Leonid [4 ]
Novikov, Innokenty [4 ]
Egorov, Anton [4 ]
机构
[1] Ioffe Inst, St Petersburg 194021, Russia
[2] HSE Univ, St Petersburg 190008, Russia
[3] Univ Paris Saclay, Ctr Nanosci & Nanotechnol, CNRS, UMR9001, F-91120 Palaiseau, France
[4] ITMO Univ, St Petersburg 197101, Russia
基金
俄罗斯科学基金会;
关键词
Microcavities; Distributed Bragg reflectors; Q-factor; Vertical cavity surface emitting lasers; Etching; Photonics; Optical pumping; Numerical models; Laser modes; Personal protective equipment; Fundamental vertical mode; micropillar; distributed Bragg reflectors; quantum dots; reservoir computing;
D O I
10.1109/JSTQE.2024.3494245
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A comprehensive numerical modelling of microcavity parameters for micropillar lasers with optical pumping was presented. The structure with a hybrid dielectric-semiconductor top mirror has a significantly higher calculated quality-factor (similar to 65000 for 5 mu m pillar) due to better vertical mode confinement. The minimum laser threshold (similar to 370 mu W for 5 mu m pillar) coincided with a temperature of 130 K, which is close to zero gain to cavity detuning. Lasing up to 220 K was demonstrated with a laser threshold of about 2.2 mW.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Gain characteristics of quantum-dot injection lasers
    A. E. Zhukov
    A. R. Kovsh
    V. M. Ustinov
    A. Yu. Egorov
    N. N. Ledentsov
    A. F. Tsatsul’nikov
    M. V. Maksimov
    S. V. Zaitsev
    Yu. M. Shernyakov
    A. V. Lunev
    P. S. Kop’ev
    Zh. I. Alferov
    D. Bimberg
    Semiconductors, 1999, 33 : 1013 - 1015
  • [42] Modeling carrier dynamics in quantum-dot lasers
    Markus, A
    Fiore, A
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2004, 201 (02): : 338 - 344
  • [43] InGaAs-GaAs quantum-dot lasers
    Technical Univ-Berlin, Berlin, Germany
    IEEE J Sel Top Quantum Electron, 2 (196-205):
  • [44] Charge neutrality violation in quantum-dot lasers
    Asryan, LV
    Suris, RA
    IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 1997, 3 (02) : 148 - 157
  • [45] InGaAs-GaAs quantum-dot lasers
    Bimberg, D
    Kirstaedter, N
    Ledentsov, NN
    Alferov, ZI
    Kopev, PS
    Ustinov, VM
    IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 1997, 3 (02) : 196 - 205
  • [46] Electrical pumping of quantum-dot lasers is possible
    Wallace, John
    LASER FOCUS WORLD, 2020, 56 (01): : 23 - 25
  • [47] A semiconductor theory for quantum-dot microcavity lasers
    Wiersig, J.
    Gies, C.
    Lorke, M.
    Jahnke, F.
    PHYSICS OF SEMICONDUCTORS, PTS A AND B, 2007, 893 : 1125 - +
  • [48] Recent advances in semiconductor quantum-dot lasers
    Reithmaier, JP
    Forchel, A
    COMPTES RENDUS PHYSIQUE, 2003, 4 (06) : 611 - 619
  • [49] Mode-locked quantum-dot lasers
    E. U. Rafailov
    M. A. Cataluna
    W. Sibbett
    Nature Photonics, 2007, 1 : 395 - 401
  • [50] Mesoscopic spatiotemporal theory for quantum-dot lasers
    Gehrig, E
    Hess, O
    PHYSICAL REVIEW A, 2002, 65 (03): : 16