Realizing mechanical stable and efficient wide-bandgap flexible perovskite solar cells by toughening the buried interface

被引:0
|
作者
Cao, Jianlei [1 ]
Chen, Weijie [1 ]
Zhao, Chenli [1 ]
Xu, Jiacheng [1 ]
Zheng, Jialei [1 ]
Kang, Shuaiqing [1 ]
Zhu, Juan [1 ]
Zhang, Jiandong [3 ]
Li, Yaowen [1 ,2 ,3 ]
机构
[1] Soochow Univ, Coll Chem Chem Engn & Mat Sci, Lab Adv Optoelect Mat, Suzhou Key Lab Novel Semicond Optoelect Mat & Devi, Suzhou 215123, Peoples R China
[2] Soochow Univ, Jiangsu Key Lab Adv Negat Carbon Technol, Suzhou 215123, Peoples R China
[3] Soochow Univ, Coll Chem Chem Engn & Mat Sci, State & Local Joint Engn Lab Novel Funct Polymer M, Jiangsu Key Lab Adv Funct Polymer Design & Applica, Suzhou 215123, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
wide-bandgap perovskite; flexible perovskite solar cells; buried interface; defect passivation; mechanical stability;
D O I
10.1007/s40843-024-3209-x
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Wide-bandgap (WBG) flexible perovskite solar cells (pero-SCs) have aroused widespread interest because of their unique advantages in constructing high-efficiency tandems. Nickel oxide (NiOx) is an excellent choice for the hole transport layer of flexible WBG pero-SCs owing to its low-temperature processing and outstanding stability. However, the presence of abundant defects at the buried perovskite layer and the weak binding force at the NiOx/perovskite interface limit the efficiency and mechanical stability of flexible WBG pero-SCs. This study explores a buried interface modification strategy by introducing the functional molecule N-acetyl-L-glutamic acid (NALG) to address the above issues. Theoretical calculation and experimental results show that carboxyl and amide groups of NALG can bond with NiOx and perovskite, respectively, which helps passivate interfacial defects and enhances perovskite crystallization. Moreover, NALG serves as a bridging molecule, significantly improving the toughness of the NiOx/perovskite interface. Consequently, the flexible WBG pero-SC based on NiOx/NALG achieved a power conversion efficiency (PCE) of 16.28% with reduced energy loss. Additionally, these flexible pero-SCs demonstrated robust mechanical durability, retaining 83% of their initial efficiencies after 10000 bending cycles at a radius of 5 mm. Furthermore, the devices exhibited outstanding long-term operational, thermal, and moisture stabilities. (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic) (sic)(sic)(sic)(sic). (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic) (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic). (sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic) (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic) (sic)(sic)(sic)(sic)(sic)(sic). (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)N-(sic)(sic)-L-(sic)(sic)(sic)(NALG)(sic) (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic). (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic) (sic)NALG(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic), (sic)(sic)(sic) (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic). (sic)(sic)(sic)(sic)(sic), NALG(sic)(sic)(sic)(sic)(sic)(sic) (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic). (sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic) (sic)(sic)(sic)(sic)(sic)16.28%(sic)(sic)(sic)(sic)(sic)(sic)(sic). (sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic) (sic)(sic)(sic), (sic)(sic)(sic)(sic)10000(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)83% ((sic)(sic)(sic)(sic)(sic) 5 mm). (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic).
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Grain boundary defect passivation by in situ formed wide-bandgap lead sulfate for efficient and stable perovskite solar cells
    Ma, Xiaohui
    Yang, Liqun
    Shang, Xueni
    Li, Mengjia
    Gao, Deyu
    Wu, Cuncun
    Zheng, Shijian
    Zhang, Boxue
    Chen, Jiangzhao
    Chen, Cong
    Song, Hongwei
    CHEMICAL ENGINEERING JOURNAL, 2021, 426
  • [42] Molecular engineering with CuanCl for effective optimization of a defective interface for wide-bandgap perovskite solar cells
    Xu, Maoxia
    Liu, Rui
    Ye, Haoran
    Ren, Haorong
    Li, Jinyu
    Deng, Chen
    Zhang, Zetan
    Yang, Chengbin
    Hu, Kexin
    Sun, Xiaoran
    Yu, Hua
    JOURNAL OF MATERIALS CHEMISTRY A, 2024, 12 (15) : 8982 - 8990
  • [43] Dual interface strategies enable efficient wide bandgap perovskite solar cells
    Hou, Fuhua
    Guo, Haikuo
    Yang, Haoran
    Ren, Xiaoqi
    Ning, Xuli
    Li, Tiantian
    APPLIED PHYSICS LETTERS, 2024, 124 (10)
  • [44] Inorganic CsPb1-xSnxIBr2 for Efficient Wide-Bandgap Perovskite Solar Cells
    Li, Nan
    Zhu, Zonglong
    Li, Jiangwei
    Jen, Alex K. -Y.
    Wang, Liduo
    ADVANCED ENERGY MATERIALS, 2018, 8 (22)
  • [45] Efficient wide-bandgap perovskite solar cells enabled by doping a bromine-rich molecule
    He, Rui
    Chen, Tingting
    Xuan, Zhipeng
    Guo, Tianzhen
    Luo, Jincheng
    Jiang, Yiting
    Wang, Wenwu
    Zhang, Jingquan
    Hao, Xia
    Wu, Lili
    Wang, Ye
    Constantinou, Iordania
    Ren, Shengqiang
    Zhao, Dewei
    NANOPHOTONICS, 2021, 10 (08) : 2059 - 2068
  • [46] Low-Temperature Fabrication of Efficient Wide-Bandgap Organolead Trihalide Perovskite Solar Cells
    Bi, Cheng
    Yuan, Yongbo
    Fang, Yanjun
    Huang, Jinsong
    ADVANCED ENERGY MATERIALS, 2015, 5 (06)
  • [47] Defect engineering in wide-bandgap perovskites for efficient perovskite-silicon tandem solar cells
    Yang, Guang
    Ni, Zhenyi
    Yu, Zhengshan J.
    Larson, Bryon W.
    Yu, Zhenhua
    Chen, Bo
    Alasfour, Abdulwahab
    Xiao, Xun
    Luther, Joseph M.
    Holman, Zachary C.
    Huang, Jinsong
    NATURE PHOTONICS, 2022, 16 (08) : 588 - +
  • [48] Surface reconstruction of wide-bandgap perovskites enables efficient perovskite/silicon tandem solar cells
    Fang, Zheng
    Deng, Bingru
    Jin, Yongbin
    Yang, Liu
    Chen, Lisha
    Zhong, Yawen
    Feng, Huiping
    Yin, Yue
    Liu, Kaikai
    Li, Yingji
    Zhang, Jinyan
    Huang, Jiarong
    Zeng, Qinghua
    Wang, Hao
    Yang, Xing
    Yang, Jinxin
    Tian, Chengbo
    Xie, Liqiang
    Wei, Zhanhua
    Xu, Xipeng
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [49] Enhancing Photovoltaically Preferred Orientation in Wide-Bandgap Perovskite for Efficient All-Perovskite Tandem Solar Cells
    Wu, Zhanghao
    Zhao, Yue
    Wang, Changlei
    Ma, Tianshu
    Chen, Chen
    Liu, Yuhui
    Jia, Tianci
    Zhai, Yuhang
    Chen, Cong
    Zhang, Cheng
    Cao, Guogyang
    Yang, Zhenhai
    Zhao, Dewei
    Li, Xiaofeng
    ADVANCED MATERIALS, 2025, 37 (08)
  • [50] Matching Charge Extraction Contact for Wide-Bandgap Perovskite Solar Cells
    Lin, Yuze
    Chen, Bo
    Zhao, Fuwen
    Zheng, Xiaopeng
    Deng, Yehao
    Shao, Yuchuan
    Fang, Yanjun
    Bai, Yang
    Wang, Chunru
    Huang, Jinsong
    ADVANCED MATERIALS, 2017, 29 (26)