Realizing mechanical stable and efficient wide-bandgap flexible perovskite solar cells by toughening the buried interface

被引:0
|
作者
Cao, Jianlei [1 ]
Chen, Weijie [1 ]
Zhao, Chenli [1 ]
Xu, Jiacheng [1 ]
Zheng, Jialei [1 ]
Kang, Shuaiqing [1 ]
Zhu, Juan [1 ]
Zhang, Jiandong [3 ]
Li, Yaowen [1 ,2 ,3 ]
机构
[1] Soochow Univ, Coll Chem Chem Engn & Mat Sci, Lab Adv Optoelect Mat, Suzhou Key Lab Novel Semicond Optoelect Mat & Devi, Suzhou 215123, Peoples R China
[2] Soochow Univ, Jiangsu Key Lab Adv Negat Carbon Technol, Suzhou 215123, Peoples R China
[3] Soochow Univ, Coll Chem Chem Engn & Mat Sci, State & Local Joint Engn Lab Novel Funct Polymer M, Jiangsu Key Lab Adv Funct Polymer Design & Applica, Suzhou 215123, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
wide-bandgap perovskite; flexible perovskite solar cells; buried interface; defect passivation; mechanical stability;
D O I
10.1007/s40843-024-3209-x
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Wide-bandgap (WBG) flexible perovskite solar cells (pero-SCs) have aroused widespread interest because of their unique advantages in constructing high-efficiency tandems. Nickel oxide (NiOx) is an excellent choice for the hole transport layer of flexible WBG pero-SCs owing to its low-temperature processing and outstanding stability. However, the presence of abundant defects at the buried perovskite layer and the weak binding force at the NiOx/perovskite interface limit the efficiency and mechanical stability of flexible WBG pero-SCs. This study explores a buried interface modification strategy by introducing the functional molecule N-acetyl-L-glutamic acid (NALG) to address the above issues. Theoretical calculation and experimental results show that carboxyl and amide groups of NALG can bond with NiOx and perovskite, respectively, which helps passivate interfacial defects and enhances perovskite crystallization. Moreover, NALG serves as a bridging molecule, significantly improving the toughness of the NiOx/perovskite interface. Consequently, the flexible WBG pero-SC based on NiOx/NALG achieved a power conversion efficiency (PCE) of 16.28% with reduced energy loss. Additionally, these flexible pero-SCs demonstrated robust mechanical durability, retaining 83% of their initial efficiencies after 10000 bending cycles at a radius of 5 mm. Furthermore, the devices exhibited outstanding long-term operational, thermal, and moisture stabilities. (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic) (sic)(sic)(sic)(sic). (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic) (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic). (sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic) (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic) (sic)(sic)(sic)(sic)(sic)(sic). (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)N-(sic)(sic)-L-(sic)(sic)(sic)(NALG)(sic) (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic). (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic) (sic)NALG(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic), (sic)(sic)(sic) (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic). (sic)(sic)(sic)(sic)(sic), NALG(sic)(sic)(sic)(sic)(sic)(sic) (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic). (sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic) (sic)(sic)(sic)(sic)(sic)16.28%(sic)(sic)(sic)(sic)(sic)(sic)(sic). (sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic) (sic)(sic)(sic), (sic)(sic)(sic)(sic)10000(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)83% ((sic)(sic)(sic)(sic)(sic) 5 mm). (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic).
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Passivation of Sodium Benzenesulfonate at the Buried Interface of a High-Performance Wide-Bandgap Perovskite Solar Cell
    La, Sijia
    Mo, Yaqi
    Li, Xing
    Feng, Xuzheng
    Chen, Xianggang
    Li, Zhuoxin
    Yang, Miao
    Ren, Dongxu
    Liu, Shuyi
    Cui, Xiaoxia
    Chen, Jieqiong
    Zhang, Zhao
    Yuan, Zhengbo
    Cai, Molang
    MATERIALS, 2024, 17 (07)
  • [22] Efficient and Stable Wide-Bandgap Perovskite Solar Cells Derived from a Thermodynamic Phase-Pure Intermediate
    Yu, Fan
    Liu, Jian
    Huang, Jiahao
    Xu, Pan
    Li, Cheng-Hui
    Zheng, You-Xuan
    Tan, Hairen
    Zuo, Jing-Lin
    SOLAR RRL, 2022, 6 (02)
  • [23] Efficient and Stable Wide-Bandgap Methylammonium-Free Perovskite Solar Cells by Simultaneous Passivation and Cleaning with Diamine
    Zhang, Luozheng
    Zhang, Yi
    Du, Kaihuai
    Gao, Gaomeijie
    Wang, Aili
    Li, Bairu
    Fang, Zhimin
    Luo, Long
    Yuan, Ningyi
    Ding, Jianning
    SOLAR RRL, 2024, 8 (23):
  • [24] Homogenizing Morphology and Composition of Methylammonium-Free Wide-Bandgap Perovskite for Efficient and Stable Tandem Solar Cells
    Lian, Xinxin
    Xu, Ye
    Fu, Wei
    Meng, Rui
    Ma, Quanxing
    Xu, Chunyu
    Luo, Ming
    Hu, Ying
    Han, Junchao
    Min, Hao
    Krishna, Anurag
    Chen, Yifan
    Zhou, Huawei
    Zhang, Xueling
    Chen, Cong
    Chang, Jin
    Li, Can
    Chen, Yifeng
    Feng, Zhiqiang
    Li, Zhen
    Zuo, Guangzheng
    Gao, Jifan
    Zhang, Hong
    Mo, Xiaoliang
    Chu, Junhao
    ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (37)
  • [25] Difunctional Polymerizable Additive Enables Efficient and Stable Wide-Bandgap Perovskites for Perovskite/Organic Tandems Solar Cells
    Chen, Honggang
    Sun, Jiaonan
    Fan, Kezhou
    Zou, Shibing
    Lin, Zhuojia
    Chen, Jianwei
    Zhang, Zheng
    Wang, Kangyang
    Jiang, Zhongjie
    Yan, Keyou
    ADVANCED FUNCTIONAL MATERIALS, 2025,
  • [26] Activating Halogen Circulation Enables Efficient and Stable Wide-Bandgap Mixed-Halide Perovskite Solar Cells
    Yang, Yang
    Chang, Qing
    Su, Jie
    Chao, Linfeng
    Wang, Yonglei
    Dai, Zhiyuan
    Huang, Xiaofeng
    Nie, Siqing
    Guo, Pengfei
    Yin, Jun
    Liu, Zhe
    Lin, Yen-Hung
    Jen, Alex K. -Y.
    Chen, Ruihao
    Wang, Hongqiang
    ADVANCED MATERIALS, 2025,
  • [27] Crystallization Enhancement and Ionic Defect Passivation in Wide-Bandgap Perovskite for Efficient and Stable All-Perovskite Tandem Solar Cells
    Qiao, Liang
    Ye, Tianshi
    Wang, Pengshuai
    Wang, Tao
    Zhang, Lin
    Sun, Ruitian
    Kong, Weiyu
    Yang, Xudong
    ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (07)
  • [28] Defect engineering in wide-bandgap perovskites for efficient perovskite–silicon tandem solar cells
    Guang Yang
    Zhenyi Ni
    Zhengshan J. Yu
    Bryon W. Larson
    Zhenhua Yu
    Bo Chen
    Abdulwahab Alasfour
    Xun Xiao
    Joseph M. Luther
    Zachary C. Holman
    Jinsong Huang
    Nature Photonics, 2022, 16 : 588 - 594
  • [29] Interfacial Engineering of Wide-Bandgap Perovskites for Efficient Perovskite/CZTSSe Tandem Solar Cells
    Wang, Deng
    Guo, Hongling
    Wu, Xin
    Deng, Xiang
    Li, Fengzhu
    Li, Zhen
    Lin, Francis
    Zhu, Zonglong
    Zhang, Yi
    Xu, Baomin
    Jen, Alex K. Y.
    ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (02)
  • [30] Interfacial passivation of wide-bandgap perovskite solar cells and tandem solar cells
    Xia, Rui
    Xu, Yibo
    Chen, Bingbing
    Kanda, Hiroyuki
    Franckevicius, Marius
    Gegevicius, Rokas
    Wang, Shubo
    Chen, Yifeng
    Chen, Daming
    Ding, Jianning
    Yuan, Ningyi
    Zhao, Ying
    Roldan-Carmona, Cristina
    Zhang, Xiaodan
    Dyson, Paul J.
    Nazeeruddin, Mohammad Khaja
    JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (38) : 21939 - 21947