ESTIMATING A DENSITY NEAR AN UNKNOWN MANIFOLD: A BAYESIAN NONPARAMETRIC APPROACH

被引:0
|
作者
Berenfeld, Clement [1 ]
Rosa, Paul [2 ]
Rousseau, Judith [2 ]
机构
[1] Univ Potsdam, Inst Math, Potsdam, Germany
[2] Univ Oxford, Dept Stat, Oxford, England
来源
ANNALS OF STATISTICS | 2024年 / 52卷 / 05期
基金
欧洲研究理事会;
关键词
Density estimation; Bayesian nonparametrics; minimax adaptive estimation; posterior concentration rates; manifold learning; CONVERGENCE-RATES; MIXTURES; SPACES;
D O I
10.1214/24-AOS2423
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study the Bayesian density estimation of data living in the offset of an unknown submanifold of the Euclidean space. In this perspective, we introduce a new notion of anisotropic H & ouml;lder for the underlying density and obtain posterior rates that are minimax optimal and adaptive to the regularity of the density, to the intrinsic dimension of the manifold, and to the size of the offset, provided that the latter is not too small-while still allowed to go to zero. Our Bayesian procedure, based on location-scale mixtures of Gaussians, appears to be convenient to implement and yields good practical results, even for quite singular data.
引用
收藏
页码:2081 / 2111
页数:31
相关论文
共 50 条