Radiomic Features as Artificial Intelligence Prognostic Models in Glioblastoma: A Systematic Review and Meta-Analysis

被引:0
|
作者
Wardhana, Dewa Putu Wisnu [1 ]
Maliawan, Sri [2 ]
Mahadewa, Tjokorda Gde Bagus [2 ]
Rosyidi, Rohadi Muhammad [3 ]
Wiranata, Sinta [4 ]
机构
[1] Univ Udayana, Udayana Univ Hosp, Fac Med, Neurosurg Div,Dept Surg, Denpasar 80361, Indonesia
[2] Univ Udayana, Prof Dr IGNG Ngoerah Gen Hosp, Fac Med, Dept Surg,Neurosurg Div, Denpasar 80113, Indonesia
[3] Mataram Univ, West Nusa Tenggara Gen Hosp, Med Fac, Dept Neurosurg, Mataram 84371, Indonesia
[4] Univ Udayana, Fac Med, Denpasar 80232, Indonesia
关键词
glioblastoma; radiomic features; artificial intelligence; overall survival; progression-free survival; PRIMARY BRAIN; SURVIVAL; TUMORS; EPIDEMIOLOGY; PREDICTOR;
D O I
10.3390/diagnostics14212354
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background: Glioblastoma, the predominant primary tumor among all central nervous systems, accounts for around 80% of cases. Prognosis in neuro-oncology involves assessing the disease's progression in different individuals, considering the time between the initial pathological diagnosis and the time until the disease worsens. A noninvasive therapeutic approach called radiomic features (RFs), which involves the application of artificial intelligence in MRI, has been developed to address this issue. This study aims to systematically gather evidence and evaluate the prognosis significance of radiomics in glioblastoma using RFs. Methods: We conducted an extensive search across the PubMed, ScienceDirect, EMBASE, Web of Science, and Cochrane databases to identify relevant original studies examining the use of RFs to evaluate the prognosis of patients with glioblastoma. This thorough search was completed on 25 July 2024. Our search terms included glioblastoma, MRI, magnetic resonance imaging, radiomics, and survival or prognosis. We included only English-language studies involving human subjects, excluding case reports, case series, and review studies. The studies were classified into two quality categories: those rated 4-6 were considered moderate-, whereas those rated 7-9 were high-quality using the Newcastle-Ottawa Scale (NOS). Hazard ratios (HRs) and their 95% confidence intervals (CIs) for OS and PFS were combined using random effects models. Results: In total, 253 studies were found in the initial search across the five databases. After screening the articles, 40 were excluded due to not meeting the eligibility criteria, and we included only 14 studies. All twelve OS and eight PFS trials were considered, involving 1.639 and 747 patients, respectively. The random effects model was used to calculate the pooled HRs for OS and PFS. The HR for OS was 3.59 (95% confidence interval [CI], 1.80-7.17), while the HR for PFS was 4.20 (95% CI, 1.02-17.32). Conclusions: An RF-AI-based approach offers prognostic significance for OS and PFS in patients with glioblastoma.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] ARTIFICIAL INTELLIGENCE IN THE ULTRASOUND DIAGNOSIS OF OVARIAN CANCER: A SYSTEMATIC REVIEW AND META-ANALYSIS
    Mitchell, Sian
    Nikolopoulos, Manolis
    Zarka, Alaa
    Al-Karawi, Dhurgham
    Ghai, Avi
    Gaughran, Jonathan
    Muallem, Med Mustafa Zelal
    Sayasneh, Ahmad
    INTERNATIONAL JOURNAL OF GYNECOLOGICAL CANCER, 2023, 33 : A275 - A276
  • [32] The predictive performance of artificial intelligence on the outcome of stroke: a systematic review and meta-analysis
    Yang, Yujia
    Tang, Li
    Deng, Yiting
    Li, Xuzi
    Luo, Anling
    Zhang, Zhao
    He, Li
    Zhu, Cairong
    Zhou, Muke
    FRONTIERS IN NEUROSCIENCE, 2023, 17
  • [33] Current Applications of Artificial Intelligence for Pediatric Dentistry: A Systematic Review and Meta-Analysis
    Rokhshad, Rata
    Zhang, Ping
    Mohammad-Rahimi, Hossein
    Shobeiri, Parnian
    Schwendicke, Falk
    PEDIATRIC DENTISTRY, 2024, 46 (01)
  • [34] Use of artificial intelligence for gestational age estimation: a systematic review and meta-analysis
    Naz, Sabahat
    Noorani, Sahir
    Zaidi, Syed Ali Jaffar
    Rahman, Abdu R.
    Sattar, Saima
    Das, Jai K.
    Hoodbhoy, Zahra
    FRONTIERS IN GLOBAL WOMENS HEALTH, 2025, 6
  • [35] Application of artificial intelligence in chronic liver diseases: a systematic review and meta-analysis
    Pakanat Decharatanachart
    Roongruedee Chaiteerakij
    Thodsawit Tiyarattanachai
    Sombat Treeprasertsuk
    BMC Gastroenterology, 21
  • [36] Utilizing Artificial Intelligence Among Patients With Diabetes: A Systematic Review and Meta-Analysis
    Alhalafi, Abdullah
    Alqahtani, Saif M.
    Alqarni, Naif A.
    Aljuaid, Amal T.
    Aljaber, Ghade T.
    Alshahrani, Lama M.
    Mushait, Hadeel
    Nandi, Partha A.
    CUREUS JOURNAL OF MEDICAL SCIENCE, 2024, 16 (04)
  • [37] ARTIFICIAL INTELLIGENCE PLATFORMS IN DENTAL CARIES DETECTION: A SYSTEMATIC REVIEW AND META-ANALYSIS
    Abbott, Lyndon p
    Saikia, Ankita
    Anthonappa, Robert p
    JOURNAL OF EVIDENCE-BASED DENTAL PRACTICE, 2025, 25 (01)
  • [38] Diagnostic performance of artificial intelligence in multiple sclerosis: a systematic review and meta-analysis
    Fardin Nabizadeh
    Elham Ramezannezhad
    Amirhosein Kargar
    Amir Mohammad Sharafi
    Ali Ghaderi
    Neurological Sciences, 2023, 44 : 499 - 517
  • [39] The value of artificial intelligence in the diagnosis of lung cancer: A systematic review and meta-analysis
    Liu, Mingsi
    Wu, Jinghui
    Wang, Nian
    Zhang, Xianqin
    Bai, Yujiao
    Guo, Jinlin
    Zhang, Lin
    Liu, Shulin
    Tao, Ke
    PLOS ONE, 2023, 18 (03):
  • [40] Artificial intelligence for polyp detection during colonoscopy: a systematic review and meta-analysis
    Barua, Ishita
    Vinsard, Daniela Guerrero
    Jodal, Henriette C.
    Loberg, Magnus
    Kalager, Mette
    Holme, Oyvind
    Misawa, Masashi
    Bretthauer, Michael
    Mori, Yuichi
    ENDOSCOPY, 2021, 53 (03) : 277 - 284