Comparative Analysis of Relevance Feedback Techniques for Image Retrieval

被引:0
|
作者
Vadicamo, Lucia [1 ]
Scotti, Francesca [1 ,2 ]
Dearle, Alan [3 ]
Connor, Richard [3 ]
机构
[1] CNR, Inst Informat Sci & Technol, Pisa, Italy
[2] Univ Pisa, Dept Comp Sci, Pisa, Italy
[3] Univ St Andrews, St Andrews, Scotland
来源
关键词
Content-Based Image Retrieval; Relevance Feedback; PicHunter; Rocchio; Polyadic Query; SVM;
D O I
10.1007/978-981-96-2054-8_16
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Relevance feedback mechanisms have garnered significant attention in content-based image and video retrieval thanks to their effectiveness in refining search results to better meet user information needs. This paper provides a comprehensive comparative analysis of four techniques: Rocchio, PicHunter, Polyadic Query, and linear Support Vector Machines, representing diverse strategies encompassing query vector modification, relevance probability estimation, adaptive similarity metrics, and classifier learning. We conducted experiments within an interactive image retrieval system, with varying amounts of user feedback: full feedback, limited positive feedback, and mixed feedback. In particular, we introduce novel enhanced versions of PicHunter and Polyadic search incorporating negative feedback. Our findings highlight the benefits of integrating both positive and negative examples, demonstrating significant performance improvements. Overall, SVM and our improved PicHunter outperformed the other approaches for ad-hoc search, especially in cases in which the feedback process is iterated several times.
引用
收藏
页码:206 / 219
页数:14
相关论文
共 50 条
  • [1] Relevance feedback techniques in the MARS image retrieval system
    Ortega-Binderberger, M
    Mehrotra, S
    MULTIMEDIA SYSTEMS, 2004, 9 (06) : 535 - 547
  • [2] Relevance feedback techniques in the MARS image retrieval system
    Michael Ortega-Binderberger
    Sharad Mehrotra
    Multimedia Systems, 2004, 9 : 535 - 547
  • [3] Relevance feedback techniques for image retrieval using multiple attributes
    Chua, TS
    Chu, CX
    Kankanhalli, M
    IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA COMPUTING AND SYSTEMS, PROCEEDINGS VOL 1, 1999, : 890 - 894
  • [4] Relevance feedback techniques for image retrieval using multiple attributes
    Natl Univ of Singapore, Singapore, Singapore
    Int Conf Multimedia Comput Syst Proc, (890-894):
  • [5] Evaluating multimodal relevance feedback techniques for medical image retrieval
    Markonis, Dimitrios
    Schaer, Roger
    Mueller, Henning
    INFORMATION RETRIEVAL JOURNAL, 2016, 19 (1-2): : 100 - 112
  • [6] Relevance feedback techniques for color-based image retrieval
    Chua, TS
    Low, WC
    Chu, CX
    1998 MULTIMEDIA MODELING, PROCEEDINGS, 1998, : 24 - 31
  • [7] Evaluating multimodal relevance feedback techniques for medical image retrieval
    Dimitrios Markonis
    Roger Schaer
    Henning Müller
    Information Retrieval Journal, 2016, 19 : 100 - 112
  • [8] Image Retrieval with relevance feedback
    Fang, L
    Hock, AY
    29TH APPLIED IMAGERY PATTERN RECOGNITION WORKSHOP, PROCEEDINGS, 2000, : 85 - 91
  • [9] Analysis of relevance feedback in content based image retrieval
    Karthik, P. Suman
    Jawahar, C. V.
    2006 9TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION, ROBOTICS AND VISION, VOLS 1- 5, 2006, : 1426 - +
  • [10] Integrating relevance feedback techniques for image retrieval using reinforcement learning
    Yin, PY
    Bhanu, B
    Chang, KC
    Dong, A
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2005, 27 (10) : 1536 - 1551