Relevance feedback techniques in the MARS image retrieval system

被引:17
|
作者
Ortega-Binderberger, M
Mehrotra, S
机构
[1] IBM Silicon Valley Lab, San Jose, CA 95141 USA
[2] Univ Calif Irvine, Irvine, CA 92697 USA
关键词
image retrieval; query refinement; relevance feedback;
D O I
10.1007/s00530-003-0126-z
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Content-based image retrieval (CBIR) has become one of the most active research areas in the past few years. Many visual feature representations have been explored and many systems built. In this paper, we focus on an important component of these systems - relevance feedback - and how we incorporated it into the MARS retrieval system. Relevance feedback techniques are based on an interactive retrieval approach to effectively take into account user preferences to provide an improved search experience. We present a series of coherent strategies, from single-point to multipoint and multifeature approaches that we have seamlessly integrated into our system and present experimental results to show their retrieval performance characteristics.
引用
收藏
页码:535 / 547
页数:13
相关论文
共 50 条
  • [1] Relevance feedback techniques in the MARS image retrieval system
    Michael Ortega-Binderberger
    Sharad Mehrotra
    [J]. Multimedia Systems, 2004, 9 : 535 - 547
  • [2] Content-based image retrieval with relevance feedback in Mars
    Rui, Y
    Huang, TS
    Mehrotra, S
    [J]. INTERNATIONAL CONFERENCE ON IMAGE PROCESSING - PROCEEDINGS, VOL II, 1997, : 815 - 818
  • [3] Relevance feedback techniques for image retrieval using multiple attributes
    Chua, TS
    Chu, CX
    Kankanhalli, M
    [J]. IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA COMPUTING AND SYSTEMS, PROCEEDINGS VOL 1, 1999, : 890 - 894
  • [4] Evaluating multimodal relevance feedback techniques for medical image retrieval
    Markonis, Dimitrios
    Schaer, Roger
    Mueller, Henning
    [J]. INFORMATION RETRIEVAL JOURNAL, 2016, 19 (1-2): : 100 - 112
  • [5] Designing of a rigorous image retrieval system with amalgamation of artificial intelligent techniques and relevance feedback
    Dhingra, Shefali
    Bansal, Poonam
    [J]. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2022, 42 (02) : 1115 - 1126
  • [6] Relevance feedback techniques for color-based image retrieval
    Chua, TS
    Low, WC
    Chu, CX
    [J]. 1998 MULTIMEDIA MODELING, PROCEEDINGS, 1998, : 24 - 31
  • [7] Evaluating multimodal relevance feedback techniques for medical image retrieval
    Dimitrios Markonis
    Roger Schaer
    Henning Müller
    [J]. Information Retrieval Journal, 2016, 19 : 100 - 112
  • [8] Accelerating of image retrieval in CBIR system with relevance feedback
    Zajic, Goran
    Kojic, Nenad
    Radosavljevic, Vladan
    Rudinac, Maja
    Rudinac, Stevan
    Reljin, Nikola
    Reljin, Irini
    Reljin, Branimir
    [J]. EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2007, 2007 (1)
  • [9] Accelerating of Image Retrieval in CBIR System with Relevance Feedback
    Goran Zajić
    Nenad Kojić
    Vladan Radosavljević
    Maja Rudinac
    Stevan Rudinac
    Nikola Reljin
    Irini Reljin
    Branimir Reljin
    [J]. EURASIP Journal on Advances in Signal Processing, 2007
  • [10] Image Retrieval with relevance feedback
    Fang, L
    Hock, AY
    [J]. 29TH APPLIED IMAGERY PATTERN RECOGNITION WORKSHOP, PROCEEDINGS, 2000, : 85 - 91