On irreducibility of modules of Whittaker type: Twisted modules and nonabelian orbifolds

被引:0
|
作者
Adamovic, Drazen [1 ]
Lam, Ching Hung [2 ]
Tomic, Veronika Pedic [1 ]
Yu, Nina [3 ]
机构
[1] Univ Zagreb, Fac Sci, Dept Math, Bijenicka 30, Zagreb 10000, Croatia
[2] Acad Sinica, Inst Math, Taipei 10617, Taiwan
[3] Xiamen Univ, Sch Math Sci, Xiamen 361005, Fujian, Peoples R China
关键词
Vertex superalgebras; Week modules; Whittaker modules; Nonabelian orbifolds; Twisted modules; VERTEX OPERATOR-ALGEBRAS; PERMUTATION ORBIFOLDS; REPRESENTATIONS;
D O I
10.1016/j.jpaa.2024.107840
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In [1], we extended the Dong-Mason theorem on irreducibility of modules for cyclic orbifold vertex algebras (cf. [12]) to the entire category of weak modules and applied this result to Whittaker modules. In this paper, we present further generalizations of these results for nonabelian orbifolds of vertex operator superalgebras. Let V be a vertex superalgebra of a countable dimension and let C be a finite subgroup of Aut(V). Assume that h E Z ( C ) where Z ( C ) is the center of the group C . For any irreducible h -twisted (weak) V -module M , we prove that if M not congruent to g o M for all g E C then M is also irreducible as V G -module. We also apply this result to examples and give irreducibility of modules of Whittaker type for orbifolds of NeveuSchwarz vertex superalgebras, Heisenberg vertex algebras, Virasoro vertex operator algebra and Heisenberg-Virasoro vertex algebra. (c) 2024 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页数:19
相关论文
共 50 条
  • [11] Whittaker modules for a Lie algebra of Block type
    Bin Wang
    Xinyun Zhu
    Frontiers of Mathematics in China, 2011, 6 : 731 - 744
  • [12] Whittaker vectors in singular Whittaker modules
    Dulam, Karthik
    Ghate, Hrishikesh
    Lau, Michael
    Pathak, Suyash
    COMMUNICATIONS IN ALGEBRA, 2024, 52 (10) : 4268 - 4271
  • [13] WHITTAKER MODULES ASSOCIATED WITH HIGHEST WEIGHT MODULES
    MATUMOTO, H
    DUKE MATHEMATICAL JOURNAL, 1990, 60 (01) : 59 - 113
  • [14] TESTING MODULES FOR IRREDUCIBILITY
    HOLT, DF
    REES, S
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1994, 57 : 1 - 16
  • [15] Whittaker modules for Heisenberg algebras and imaginary Whittaker modules for affine Lie algebras
    Christodoulopoulou, Konstantina
    JOURNAL OF ALGEBRA, 2008, 320 (07) : 2871 - 2890
  • [16] The composition series of modules induced from Whittaker modules
    Milicic, D
    Soergel, W
    COMMENTARII MATHEMATICI HELVETICI, 1997, 72 (04) : 503 - 520
  • [17] Whittaker modules and quasi-Whittaker modules for the Euclidean Lie algebra e(3)
    Cai, Yan-an
    Shen, Ran
    Zhang, Jiangang
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2016, 220 (04) : 1419 - 1433
  • [18] WHITTAKER CATEGORIES AND WHITTAKER MODULES FOR LIE SUPERALGEBRAS
    Bagci, Irfan
    Christodoulopoulou, Konstantina
    Wiesner, Emilie
    COMMUNICATIONS IN ALGEBRA, 2014, 42 (11) : 4932 - 4947
  • [19] EISENSTEIN IRREDUCIBILITY CRITERION FOR MODULES
    Tekir, Unsal
    Koc, Suat
    COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2021, 74 (01): : 23 - 28
  • [20] Irreducibility criteria for factorial modules
    Jakhar, Anuj
    Sangwan, Neeraj
    COMMUNICATIONS IN ALGEBRA, 2023, 51 (05) : 1826 - 1829