IDDLE: A Novel Deep Learning-Based Approach for Intrusion Detection Problem Using Feature Extraction

被引:0
|
作者
Goktepe, Yunus Emre [1 ]
Uzun, Yusuf [1 ]
机构
[1] Necmettin Erbakan Univ, Seydisehir Ahmet Cengiz Fac Engn, Dept Comp Engn, Konya, Turkiye
来源
SECURITY AND PRIVACY | 2025年 / 8卷 / 01期
关键词
deep learning; feature extraction; intrusion detection; network security;
D O I
10.1002/spy2.488
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The internet has revolutionized access to information, enabling users to retrieve vast amounts of data effortlessly, transcending geographical and temporal barriers. This unprecedented connectivity has advanced research, education, and communication, but it has also created vulnerabilities that cybercriminals exploit to steal confidential information, interfere with processes, and carry out extensive attacks. Consequently, robust security measures are essential to safeguard the integrity and confidentiality of online data. Intrusion detection systems (IDS) are crucial in defending against such threats, employing both signature-based and anomaly-based models. Even though signature-based IDS are highly effective at countering recognized threats, they struggle with novel, "zero-day" attacks. Conversely, anomaly-based detection systems can identify unknown threats but often generate high false positive rates. A hybrid IDS, combining elements of both approaches, offers a more comprehensive defense. This study presents a new intrusion detection model utilizing deep learning, evaluated on the KDD'99 and NSL-KDD datasets. The proposed model (IDDLE-intrusion detection deep learning engine) incorporates advanced preprocessing techniques, including normalization, feature extraction, and categorical encoding. Empirical findings demonstrate that the proposed model outperforms existing state-of-the-art approaches. This study underscores the capability of deep learning to enhance it in improving IDS performance, emphasizing the importance of continuous innovation and collaboration among security researchers, developers, and users to stay ahead of evolving cyberthreats. The findings underscore the significance of advanced feature extraction and hybrid detection strategies in developing robust intrusion detection systems.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] ID-RDRL: a deep reinforcement learning-based feature selection intrusion detection model
    Ren, Kezhou
    Zeng, Yifan
    Cao, Zhiqin
    Zhang, Yingchao
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [42] A novel time efficient learning-based approach for smart intrusion detection system
    Sugandh Seth
    Gurvinder Singh
    Kuljit Kaur Chahal
    Journal of Big Data, 8
  • [43] A novel time efficient learning-based approach for smart intrusion detection system
    Seth, Sugandh
    Singh, Gurvinder
    Chahal, Kuljit Kaur
    JOURNAL OF BIG DATA, 2021, 8 (01)
  • [44] Deep Learning-Based Network Intrusion Detection Using Multiple Image Transformers
    Kim, Taehoon
    Pak, Wooguil
    APPLIED SCIENCES-BASEL, 2023, 13 (05):
  • [45] A Review of Intrusion Detection for Railway Perimeter Using Deep Learning-Based Methods
    Wang, Jin
    Zhai, Hongyang
    Yang, Yang
    Xu, Niuqi
    Li, Hao
    Fu, Di
    IEEE ACCESS, 2024, 12 : 184142 - 184157
  • [46] Deep Learning-Based Framework for the Detection of Cyberattack Using Feature Engineering
    Akhtar, Muhammad Shoaib
    Feng, Tao
    SECURITY AND COMMUNICATION NETWORKS, 2021, 2021
  • [47] Deep Feature Extraction in Intrusion Detection System
    Wang, Anbang
    Gong, Xinyu
    Lu, Jialiang
    4TH IEEE INTERNATIONAL CONFERENCE ON SMART CLOUD (SMARTCLOUD 2019) / 3RD INTERNATIONAL SYMPOSIUM ON REINFORCEMENT LEARNING (ISRL 2019), 2019, : 104 - 109
  • [48] Network Intrusion Detection System using Feature Extraction based on Deep Sparse Autoencoder
    Lee, Joohwa
    Pak, JuGeon
    Lee, Myungsuk
    11TH INTERNATIONAL CONFERENCE ON ICT CONVERGENCE: DATA, NETWORK, AND AI IN THE AGE OF UNTACT (ICTC 2020), 2020, : 1282 - 1287
  • [49] Machine Learning-Based Multilevel Intrusion Detection Approach
    Ling, Jiasheng
    Zhang, Lei
    Liu, Chenyang
    Xia, Guoxin
    Zhang, Zhenxiong
    ELECTRONICS, 2025, 14 (02):
  • [50] A deep learning-based intrusion detection approach for mobile Ad-hoc network
    Rahma Meddeb
    Farah Jemili
    Bayrem Triki
    Ouajdi Korbaa
    Soft Computing, 2023, 27 : 9425 - 9439