IDDLE: A Novel Deep Learning-Based Approach for Intrusion Detection Problem Using Feature Extraction

被引:0
|
作者
Goktepe, Yunus Emre [1 ]
Uzun, Yusuf [1 ]
机构
[1] Necmettin Erbakan Univ, Seydisehir Ahmet Cengiz Fac Engn, Dept Comp Engn, Konya, Turkiye
来源
SECURITY AND PRIVACY | 2025年 / 8卷 / 01期
关键词
deep learning; feature extraction; intrusion detection; network security;
D O I
10.1002/spy2.488
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The internet has revolutionized access to information, enabling users to retrieve vast amounts of data effortlessly, transcending geographical and temporal barriers. This unprecedented connectivity has advanced research, education, and communication, but it has also created vulnerabilities that cybercriminals exploit to steal confidential information, interfere with processes, and carry out extensive attacks. Consequently, robust security measures are essential to safeguard the integrity and confidentiality of online data. Intrusion detection systems (IDS) are crucial in defending against such threats, employing both signature-based and anomaly-based models. Even though signature-based IDS are highly effective at countering recognized threats, they struggle with novel, "zero-day" attacks. Conversely, anomaly-based detection systems can identify unknown threats but often generate high false positive rates. A hybrid IDS, combining elements of both approaches, offers a more comprehensive defense. This study presents a new intrusion detection model utilizing deep learning, evaluated on the KDD'99 and NSL-KDD datasets. The proposed model (IDDLE-intrusion detection deep learning engine) incorporates advanced preprocessing techniques, including normalization, feature extraction, and categorical encoding. Empirical findings demonstrate that the proposed model outperforms existing state-of-the-art approaches. This study underscores the capability of deep learning to enhance it in improving IDS performance, emphasizing the importance of continuous innovation and collaboration among security researchers, developers, and users to stay ahead of evolving cyberthreats. The findings underscore the significance of advanced feature extraction and hybrid detection strategies in developing robust intrusion detection systems.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Machine learning-based network intrusion detection for big and imbalanced data using oversampling, stacking feature embedding and feature extraction
    Talukder, Md. Alamin
    Islam, Md. Manowarul
    Uddin, Md Ashraf
    Hasan, Khondokar Fida
    Sharmin, Selina
    Alyami, Salem A.
    Moni, Mohammad Ali
    JOURNAL OF BIG DATA, 2024, 11 (01)
  • [32] Machine learning-based network intrusion detection for big and imbalanced data using oversampling, stacking feature embedding and feature extraction
    Md. Alamin Talukder
    Md. Manowarul Islam
    Md Ashraf Uddin
    Khondokar Fida Hasan
    Selina Sharmin
    Salem A. Alyami
    Mohammad Ali Moni
    Journal of Big Data, 11
  • [33] A novel deep learning-based intrusion detection system for IoT DDoS security
    Hizal, Selman
    Cavusoglu, Unal
    Akgun, Devrim
    INTERNET OF THINGS, 2024, 28
  • [34] Deep learning-based intrusion detection approach for securing industrial Internet of Things
    Soliman, Sahar
    Oudah, Wed
    Aljuhani, Ahamed
    ALEXANDRIA ENGINEERING JOURNAL, 2023, 81 : 371 - 383
  • [35] Collaborative Intrusion Detection for VANETs: A Deep Learning-Based Distributed SDN Approach
    Shu, Jiangang
    Zhou, Lei
    Zhang, Weizhe
    Du, Xiaojiang
    Guizani, Mohsen
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2021, 22 (07) : 4519 - 4530
  • [36] A deep learning method with wrapper based feature extraction for wireless intrusion detection system
    Kasongo, Sydney Mambwe
    Sun, Yanxia
    COMPUTERS & SECURITY, 2020, 92 (92)
  • [37] Deep Learning-based Intrusion Detection for IoT Networks
    Ge, Mengmeng
    Fu, Xiping
    Syed, Naeem
    Baig, Zubair
    Teo, Gideon
    Robles-Kelly, Antonio
    2019 IEEE 24TH PACIFIC RIM INTERNATIONAL SYMPOSIUM ON DEPENDABLE COMPUTING (PRDC 2019), 2019, : 256 - 265
  • [38] A Deep Learning-Based Approach for Extraction of Positioning Feature Points in Lifting Holes
    Qian, Jiahui
    Xia, Wenjun
    Zhao, Zhangyan
    Qiu, Faju
    APPLIED SCIENCES-BASEL, 2023, 13 (17):
  • [39] Novel Framework for an Intrusion Detection System Using Multiple Feature Selection Methods Based on Deep Learning
    Eljialy, A. E. M.
    Uddin, Mohammed Yousuf
    Ahmad, Sultan
    TSINGHUA SCIENCE AND TECHNOLOGY, 2024, 29 (04): : 948 - 958
  • [40] ID-RDRL: a deep reinforcement learning-based feature selection intrusion detection model
    Kezhou Ren
    Yifan Zeng
    Zhiqin Cao
    Yingchao Zhang
    Scientific Reports, 12