Mapping T cell dynamics to molecular profiles through behavior-guided transcriptomics

被引:0
|
作者
Wezenaar, A. K. L. [1 ,2 ]
Pandey, U. [1 ,2 ]
Keramati, F. [1 ]
Hernandez-Roca, M. [3 ]
Brazda, P. [1 ,4 ]
Roman, M. Barrera [1 ,2 ]
Cleven, A. [4 ]
Karaiskaki, F. [4 ]
Aarts-Riemens, T. [4 ]
de Blank, S. [1 ,2 ]
Hernandez-Lopez, P. [4 ]
Heijhuurs, S. [4 ]
Alemany, A. [5 ,6 ]
Kuball, J. [4 ,7 ]
Sebestyen, Z. [4 ]
Dekkers, J. F. [1 ,2 ,8 ]
Stunnenberg, H. G. [1 ]
Alieva, M. [3 ]
Rios, A. C. [1 ,2 ]
机构
[1] Princess Maxima Ctr Pediat Oncol, Utrecht, Netherlands
[2] Oncode Inst, Utrecht, Netherlands
[3] Univ Autonoma Madrid, Inst Biomed Res Sols Morreale, Spanish Natl Res Council, Madrid, Spain
[4] Univ Med Ctr Utrecht, Ctr Translat Immunol, Utrecht, Netherlands
[5] Leiden Univ, Med Ctr, Dept Anat & Embryol, Leiden, Netherlands
[6] Novo Nordisk Fdn Ctr Stem Cell Med, Leiden, Netherlands
[7] Univ Utrecht, UMC Utrecht, Dept Hematol, Utrecht, Netherlands
[8] Univ Med Ctr Utrecht, Educ Ctr, Utrecht, Netherlands
关键词
GENE-EXPRESSION; ORGANOIDS; CULTURE; ATLAS; LINKS;
D O I
10.1038/s41596-024-01126-4
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The rise of cellular immunotherapy for cancer treatment has led to the utilization of immune oncology cocultures to simulate T cell interactions with cancer cells for assessing their antitumor response. Previously, we developed BEHAV3D, a three-dimensional live imaging platform of patient-derived tumor organoid (PDO) and engineered T cell cocultures, that analyzes T cells' dynamics to gain crucial insights into their behavior during tumor targeting. However, live imaging alone cannot determine the molecular drivers behind these behaviors. Conversely, single-cell RNA sequencing (scRNA-seq) allows researchers to analyze the transcriptional profiles of individual cells but lacks spatio-temporal resolution. Here we present an extension to the BEHAV3D protocol, called Behavior-Guided Transcriptomics (BGT), for integration of T cell live imaging data with single-cell transcriptomics, enabling analysis of gene programs linked to dynamic T cell behaviors. BGT uses live imaging data processed by BEHAV3D to guide the experimental setup for cell separation based on their PDO engagement levels subsequently followed by fluorescence-activated cell sorting and scRNA-seq. It then integrates in silico simulations of these experiments to computationally infer T cell behavior on scRNA-seq data, uncovering new biomarkers for both highly functional and ineffective T cells, that could be exploited to enhance therapeutic efficacy. The protocol, designed for users with fundamental cell culture, imaging and programming skills, is readily adaptable to diverse coculture settings and takes one month to perform.
引用
收藏
页数:31
相关论文
共 50 条
  • [41] Mitochondrial Dynamics Controls T Cell Fate through Metabolic Programming
    Buck, Michael D.
    O'Sullivan, David
    Geltink, Ramon I. Klein
    Curtis, Jonathan D.
    Chang, Chih-Hao
    Sanin, David E.
    Qiu, Jing
    Kretz, Oliver
    Braas, Daniel
    van der Windt, Gerritje J. W.
    Chen, Qiongyu
    Huang, Stanley Ching-Cheng
    O'Neill, Christina M.
    Edelson, Brian T.
    Pearce, Edward J.
    Sesaki, Hiromi
    Huber, Tobias B.
    Rambold, Angelika S.
    Pearce, Erika L.
    CELL, 2016, 166 (01) : 63 - 76
  • [42] Proximity mapping of troponin T and troponin I in cardiac troponin using molecular dynamics simulations
    Jayasundar, Jayant J.
    Xing, Jun
    Robinson, John M.
    Cheung, Herbert C.
    Dong, Wen-Ji
    BIOPHYSICAL JOURNAL, 2009, 96 (03) : 503A - 503A
  • [43] Liposome-Prilocaine Interaction Mapping Evaluated through STD NMR and Molecular Dynamics Simulations
    Cabeca, Luis F.
    Pickholz, Monica
    de Paula, Eneida
    Marsaioli, Anita J.
    JOURNAL OF PHYSICAL CHEMISTRY B, 2009, 113 (08): : 2365 - 2370
  • [44] Single-cell transcriptomics of human iPSC differentiation dynamics reveal a core molecular network of Parkinson's disease
    Novak, Gabriela
    Kyriakis, Dimitrios
    Grzyb, Kamil
    Bernini, Michela
    Rodius, Sophie
    Dittmar, Gunnar
    Finkbeiner, Steven
    Skupin, Alexander
    COMMUNICATIONS BIOLOGY, 2022, 5 (01)
  • [45] Single-cell transcriptomics of human iPSC differentiation dynamics reveal a core molecular network of Parkinson’s disease
    Gabriela Novak
    Dimitrios Kyriakis
    Kamil Grzyb
    Michela Bernini
    Sophie Rodius
    Gunnar Dittmar
    Steven Finkbeiner
    Alexander Skupin
    Communications Biology, 5
  • [46] T CELL RECEPTOR(TCR) REPERTORIE AND MOLECULAR PROFILES OF INJURY-RESPONSIVE REGULATORY T CELLS (TREGS)
    Guo, Fei
    Zhang, Fan
    Keegan, Joshua
    Cohill, Laura
    Griffith, Alec
    Ng, Julie
    Howard, Kaitlyn
    Lederer, Jacqueline A.
    SHOCK, 2020, 53 : 120 - 120
  • [47] HETERODUPLEX MAPPING IN THE MOLECULAR ANALYSIS OF THE HUMAN T-CELL LEUKEMIA (LYMPHOTROPIC) VIRUSES
    GONDA, MA
    WONGSTAAL, F
    GALLO, RC
    CLEMENTS, JE
    GILDEN, RV
    CANCER RESEARCH, 1985, 45 (09) : 4553 - 4558
  • [48] CHARACTERIZING HIGH-SPEED IMPACT BEHAVIOR OF UHMWPE THROUGH MOLECULAR DYNAMICS SIMULATION
    Guo, Guodong
    Alam, Shah
    PROCEEDINGS OF ASME 2023 INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, IMECE2023, VOL 11, 2023,
  • [49] Collective behavior in the single-electron charging regime through classical molecular dynamics
    Carbonaro, CM
    Bertoncini, R
    Meloni, F
    Rovere, M
    PHYSICAL REVIEW B, 1996, 53 (15) : 10154 - 10159
  • [50] Mapping electron dynamics in molecular H2 using high-order-harmonic-generation time profiles
    Buzari, Behnaz
    Vafaee, Mohsen
    Sabzyan, Hassan
    PHYSICAL REVIEW A, 2012, 85 (03):