Mapping T cell dynamics to molecular profiles through behavior-guided transcriptomics

被引:0
|
作者
Wezenaar, A. K. L. [1 ,2 ]
Pandey, U. [1 ,2 ]
Keramati, F. [1 ]
Hernandez-Roca, M. [3 ]
Brazda, P. [1 ,4 ]
Roman, M. Barrera [1 ,2 ]
Cleven, A. [4 ]
Karaiskaki, F. [4 ]
Aarts-Riemens, T. [4 ]
de Blank, S. [1 ,2 ]
Hernandez-Lopez, P. [4 ]
Heijhuurs, S. [4 ]
Alemany, A. [5 ,6 ]
Kuball, J. [4 ,7 ]
Sebestyen, Z. [4 ]
Dekkers, J. F. [1 ,2 ,8 ]
Stunnenberg, H. G. [1 ]
Alieva, M. [3 ]
Rios, A. C. [1 ,2 ]
机构
[1] Princess Maxima Ctr Pediat Oncol, Utrecht, Netherlands
[2] Oncode Inst, Utrecht, Netherlands
[3] Univ Autonoma Madrid, Inst Biomed Res Sols Morreale, Spanish Natl Res Council, Madrid, Spain
[4] Univ Med Ctr Utrecht, Ctr Translat Immunol, Utrecht, Netherlands
[5] Leiden Univ, Med Ctr, Dept Anat & Embryol, Leiden, Netherlands
[6] Novo Nordisk Fdn Ctr Stem Cell Med, Leiden, Netherlands
[7] Univ Utrecht, UMC Utrecht, Dept Hematol, Utrecht, Netherlands
[8] Univ Med Ctr Utrecht, Educ Ctr, Utrecht, Netherlands
关键词
GENE-EXPRESSION; ORGANOIDS; CULTURE; ATLAS; LINKS;
D O I
10.1038/s41596-024-01126-4
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The rise of cellular immunotherapy for cancer treatment has led to the utilization of immune oncology cocultures to simulate T cell interactions with cancer cells for assessing their antitumor response. Previously, we developed BEHAV3D, a three-dimensional live imaging platform of patient-derived tumor organoid (PDO) and engineered T cell cocultures, that analyzes T cells' dynamics to gain crucial insights into their behavior during tumor targeting. However, live imaging alone cannot determine the molecular drivers behind these behaviors. Conversely, single-cell RNA sequencing (scRNA-seq) allows researchers to analyze the transcriptional profiles of individual cells but lacks spatio-temporal resolution. Here we present an extension to the BEHAV3D protocol, called Behavior-Guided Transcriptomics (BGT), for integration of T cell live imaging data with single-cell transcriptomics, enabling analysis of gene programs linked to dynamic T cell behaviors. BGT uses live imaging data processed by BEHAV3D to guide the experimental setup for cell separation based on their PDO engagement levels subsequently followed by fluorescence-activated cell sorting and scRNA-seq. It then integrates in silico simulations of these experiments to computationally infer T cell behavior on scRNA-seq data, uncovering new biomarkers for both highly functional and ineffective T cells, that could be exploited to enhance therapeutic efficacy. The protocol, designed for users with fundamental cell culture, imaging and programming skills, is readily adaptable to diverse coculture settings and takes one month to perform.
引用
收藏
页数:31
相关论文
共 50 条
  • [21] Strain hardening behavior in T-carbon: A molecular dynamics study
    Zhou, Runhua
    Bai, Lichun
    Huang, Changjin
    Srikanth, Narasimalu
    Wu, Mao See
    MATERIALS & DESIGN, 2024, 242
  • [22] Influence of Water on Tensile Behavior of Illite through the Molecular Dynamics Method
    Lu, Ming
    Diao, Qiu-Feng
    Zheng, Yuan-Yuan
    Yin, Zhen-Yu
    Dai, Zheng
    INTERNATIONAL JOURNAL OF GEOMECHANICS, 2024, 24 (04)
  • [23] Dynamics of T-cell checkpoint receptor profiles during melanoma progression
    Edwards, Jarem
    Tasker, Annie
    da Silva, Ines Pires
    Quek, Camelia
    Allanson, Benjamin M.
    Saw, Robyn P. M.
    Thompson, John F.
    Menzies, Alexander M.
    Palendira, Umaimainthan
    Wilmott, James S.
    Long, Georgina V.
    Scolyer, Richard
    CANCER RESEARCH, 2019, 79 (13)
  • [24] Histology-guided proteomic analysis to investigate the molecular profiles of clear cell Renal Cell Carcinoma grades
    Stella, Martina
    Chinello, Clizia
    Cazzaniga, Anna
    Smith, Andrew
    Galli, Manuel
    Piga, Isabella
    Grasso, Angelica
    Grasso, Marco
    Del Puppo, Marina
    Varallo, Marta
    Bovo, Giorgio
    Magni, Fulvio
    JOURNAL OF PROTEOMICS, 2019, 191 : 38 - 47
  • [25] Identification of molecular mechanisms governing CAR-T cell response in MM patients using single cell transcriptomics
    Jordana-Urriza, L.
    Serrano, G.
    Calleja-Cervantes, M. E.
    Martin-Uriz, P. San
    Vilas-Zornoza, A.
    Ullate-Agote, A.
    Lopez, A.
    Zabaleta, A.
    Alignani, D.
    Lozano, T.
    Cabanas, V.
    Navarro-Bailon, A.
    Oliver-Caldes, A.
    Espanol-Rego, M.
    Pascal, M.
    Martin-Antonio, B.
    Juan, M.
    Urbano-Izpisua, A.
    Reguera, J. L.
    Moraleda, J. M.
    Mateos, M. V.
    Sanchez-Guijo, F.
    Alfonso, A.
    Rodriguez-Otero, P.
    de larrea, C. Fernandez
    Paiva, B.
    Inoges, S.
    de Cerio, A. Lopez-Diaz
    Lasarte, J. J.
    Rodriguez-Madoz, J. R.
    Hernaez, M.
    Prosper, F.
    HUMAN GENE THERAPY, 2022, 33 (23-24) : A132 - A133
  • [26] Identification of Molecular Mechanisms Governing CAR-T Cell Response in MM Patients Using Single Cell Transcriptomics
    Jordana-Urriza, Lorea
    Serrano, Guillermo
    Erendira Calleja-Cervantes, Maria
    San Martin-Uriz, Patxi
    Vilas-Zornoza, Amaia
    Ullate-Agote, Asier
    Zabaleta, Aintzane
    Alignani, Diego
    Lozano, Teresa
    Cabanas, Valentin
    Navarro-Bailon, Almudena
    Oliver-Caldes, Aina
    Espanol-Rego, Marta
    Pascal, Mariona
    Juan, Manel
    Urbano-Ispizua, Alvaro
    Luis Reguera, Juan
    Maria Moraleda, Jose
    Mateos, Maria-Victoria
    Sanchez-Guijo, Fermin
    Alfonso Pierola, Ana
    Rifon Roca, Jose J.
    Rodriguez-Otero, Paula
    Fernandez de Larrea, Carlos
    Paiva, Bruno
    Inoges, Susana
    Lopez-Diaz De Cerio, Ascension
    Jose Lasarte, Juan
    San-Miguel, Jesus
    Roberto Rodriguez-Madoz, Juan
    Hernaez, Mikel
    Prosper, Felipe
    BLOOD, 2022, 140 : 7366 - 7368
  • [27] Cell cycle regulatory molecular profiles of pediatric T-cell lymphoblastic leukemia and lymphoma
    Bonn, Bettina R.
    Krieger, David
    Burkhardt, Birgit
    LEUKEMIA & LYMPHOMA, 2012, 53 (04) : 557 - 568
  • [28] Precision subtypes of T cell-mediated rejection identified by molecular profiles
    Kadota, Paul Ostrom
    Hajjiri, Zahraa
    Finn, Patricia W.
    Perkins, David L.
    FRONTIERS IN IMMUNOLOGY, 2015, 6
  • [29] Molecular Simulations Reveal the Dynamics of the T-Cell Receptor in a T-Cell Model Membrane
    Prakaash, Dheeraj
    Acuto, Oreste
    Cook, Graham
    Kalli, Antreas
    BIOPHYSICAL JOURNAL, 2021, 120 (03) : 130A - 130A
  • [30] Mapping Cholesterol Interaction Sites on Serotonin Transporter through Coarse Grained Molecular Dynamics
    Ferraro, Mariarosaria
    Masetti, Matteo
    Recanatini, Maurizio
    Cavalli, Andrea
    Bottegoni, Giovanni
    PLOS ONE, 2016, 11 (12):