Mapping T cell dynamics to molecular profiles through behavior-guided transcriptomics

被引:0
|
作者
Wezenaar, A. K. L. [1 ,2 ]
Pandey, U. [1 ,2 ]
Keramati, F. [1 ]
Hernandez-Roca, M. [3 ]
Brazda, P. [1 ,4 ]
Roman, M. Barrera [1 ,2 ]
Cleven, A. [4 ]
Karaiskaki, F. [4 ]
Aarts-Riemens, T. [4 ]
de Blank, S. [1 ,2 ]
Hernandez-Lopez, P. [4 ]
Heijhuurs, S. [4 ]
Alemany, A. [5 ,6 ]
Kuball, J. [4 ,7 ]
Sebestyen, Z. [4 ]
Dekkers, J. F. [1 ,2 ,8 ]
Stunnenberg, H. G. [1 ]
Alieva, M. [3 ]
Rios, A. C. [1 ,2 ]
机构
[1] Princess Maxima Ctr Pediat Oncol, Utrecht, Netherlands
[2] Oncode Inst, Utrecht, Netherlands
[3] Univ Autonoma Madrid, Inst Biomed Res Sols Morreale, Spanish Natl Res Council, Madrid, Spain
[4] Univ Med Ctr Utrecht, Ctr Translat Immunol, Utrecht, Netherlands
[5] Leiden Univ, Med Ctr, Dept Anat & Embryol, Leiden, Netherlands
[6] Novo Nordisk Fdn Ctr Stem Cell Med, Leiden, Netherlands
[7] Univ Utrecht, UMC Utrecht, Dept Hematol, Utrecht, Netherlands
[8] Univ Med Ctr Utrecht, Educ Ctr, Utrecht, Netherlands
关键词
GENE-EXPRESSION; ORGANOIDS; CULTURE; ATLAS; LINKS;
D O I
10.1038/s41596-024-01126-4
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The rise of cellular immunotherapy for cancer treatment has led to the utilization of immune oncology cocultures to simulate T cell interactions with cancer cells for assessing their antitumor response. Previously, we developed BEHAV3D, a three-dimensional live imaging platform of patient-derived tumor organoid (PDO) and engineered T cell cocultures, that analyzes T cells' dynamics to gain crucial insights into their behavior during tumor targeting. However, live imaging alone cannot determine the molecular drivers behind these behaviors. Conversely, single-cell RNA sequencing (scRNA-seq) allows researchers to analyze the transcriptional profiles of individual cells but lacks spatio-temporal resolution. Here we present an extension to the BEHAV3D protocol, called Behavior-Guided Transcriptomics (BGT), for integration of T cell live imaging data with single-cell transcriptomics, enabling analysis of gene programs linked to dynamic T cell behaviors. BGT uses live imaging data processed by BEHAV3D to guide the experimental setup for cell separation based on their PDO engagement levels subsequently followed by fluorescence-activated cell sorting and scRNA-seq. It then integrates in silico simulations of these experiments to computationally infer T cell behavior on scRNA-seq data, uncovering new biomarkers for both highly functional and ineffective T cells, that could be exploited to enhance therapeutic efficacy. The protocol, designed for users with fundamental cell culture, imaging and programming skills, is readily adaptable to diverse coculture settings and takes one month to perform.
引用
收藏
页数:31
相关论文
共 50 条
  • [1] Mapping the functional landscape of T cell receptor repertoires by single-T cell transcriptomics
    Zhang, Ze
    Xiong, Danyi
    Wang, Xinlei
    Liu, Hongyu
    Wang, Tao
    NATURE METHODS, 2021, 18 (01) : 92 - +
  • [2] Mapping the functional landscape of T cell receptor repertoires by single-T cell transcriptomics
    Ze Zhang
    Danyi Xiong
    Xinlei Wang
    Hongyu Liu
    Tao Wang
    Nature Methods, 2021, 18 : 92 - 99
  • [3] Mapping Human Uterine Disorders Through Single-Cell Transcriptomics
    Boldu-Fernandez, Sandra
    Lliberos, Carolina
    Simon, Carlos
    Mas, Aymara
    CELLS, 2025, 14 (03)
  • [4] Mapping the molecular landscape of Lotus japonicus nodule organogenesis through spatiotemporal transcriptomics
    Ye, Keyi
    Bu, Fengjiao
    Zhong, Liyuan
    Dong, Zhaonian
    Ma, Zhaoxu
    Tang, Zhanpeng
    Zhang, Yu
    Yang, Xueyong
    Xu, Xun
    Wang, Ertao
    Lucas, William J.
    Huang, Sanwen
    Liu, Huan
    Zheng, Jianshu
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [5] Mapping cell communication dynamics in acne: Insights from single-cell and spatial transcriptomics
    Deng, M.
    Odhiambo, W. O.
    Gu, Y.
    Pellegrini, M.
    Modlin, R. L.
    Agak, G. W.
    JOURNAL OF INVESTIGATIVE DERMATOLOGY, 2024, 144 (08) : S13 - S13
  • [6] Spatial transcriptomics of B cell and T cell receptors reveals lymphocyte clonal dynamics
    Engblom, Camilla
    Thrane, Kim
    Lin, Qirong
    Andersson, Alma
    Toosi, Hosein
    Chen, Xinsong
    Steiner, Embla
    Lu, Chang
    Mantovani, Giulia
    Hagemann-Jensen, Michael
    Saarenpaa, Sami
    Jangard, Mattias
    Saez-Rodriguez, Julio
    Michaelsson, Jakob
    Hartman, Johan
    Lagergren, Jens
    Mold, Jeff E.
    Lundeberg, Joakim
    Frisen, Jonas
    SCIENCE, 2023, 382 (6675) : 1137 - +
  • [7] Cell-type-specific nascent transcriptomics through PRECISE-seq reveal molecular principles of tissue dynamics
    Chovatiya, G.
    Versluis, P.
    DeBerardine, M.
    Huang, S.
    Ray, J.
    Ozer, A.
    Tumbar, T.
    JOURNAL OF INVESTIGATIVE DERMATOLOGY, 2024, 144 (08) : S120 - S120
  • [8] Integrative Single-Cell Transcriptomics and Epigenomics Mapping of the Fetal Retina Developmental Dynamics
    Li, Ruonan
    Liu, Jiangyi
    Yi, Ping
    Yang, Xianli
    Chen, Jun
    Zhao, Chenyang
    Liao, Xingyun
    Wang, Xiaotang
    Xu, Zongren
    Lu, Huiping
    Li, Hongshun
    Zhang, Zhi
    Liu, Xianyang
    Xiang, Junjie
    Hu, Ke
    Qi, Hongbo
    Yu, Jia
    Yang, Peizeng
    Hou, Shengping
    ADVANCED SCIENCE, 2023, 10 (16)
  • [9] Molecular and Cellular Dynamics of Aortic Aneurysms Revealed by Single-Cell Transcriptomics
    Li, Yanming
    LeMaire, Scott A.
    Shen, Ying H.
    ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY, 2021, 41 (11) : 2671 - 2680
  • [10] Scratch behavior of reinforced HDPE through molecular dynamics simulations
    Ricardo Simoes
    Marta Oliveira
    Jocelyn Yao
    Chris Tian
    S. M. Mirkhalaf
    Witold Brostow
    MRS Communications, 2021, 11 : 628 - 634