AAV-mediated Stambp gene replacement therapy rescues neurological defects in a mouse model of microcephaly-capillary malformation syndrome

被引:2
|
作者
Hu, Meixin [1 ]
Li, Jun [2 ,3 ]
Deng, Jingxin [1 ]
Liu, Chunxue [1 ]
Liu, Yingying [2 ,3 ]
Li, Huiping [1 ,4 ]
Feng, Weijun [2 ,3 ,5 ]
Xu, Xiu [1 ]
机构
[1] Fudan Univ, Childrens Hosp, Natl Childrens Med Ctr, Dept Child Hlth Care, Shanghai, Peoples R China
[2] Fudan Univ, Childrens Hosp, Inst Pediat, Shanghai 200032, Peoples R China
[3] Fudan Univ, Inst Biomed Sci, Shanghai Key Lab Med Epigenet, Int Colab Med Epigenet & Metab,Minist Sci & Techno, Shanghai 200032, Peoples R China
[4] Fudan Univ Xiamen, Xiamen Childrens Hosp, Childrens Hosp, Dept Child Hlth Care, Xiamen 361006, Peoples R China
[5] Fudan Univ Xiamen, Xiamen Childrens Hosp, Fujian Key Lab Neonatal Dis, Xiamen Key Lab Neonatal Dis,Childrens Hosp, Xiamen 361006, Peoples R China
基金
国家重点研发计划;
关键词
MENTAL-RETARDATION; DUPLICATION; BROTHERS; MUTATION; NEURONS; AMSH; STEP;
D O I
10.1016/j.ymthe.2024.08.017
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The microcephaly-capillary malformation (MIC-CAP) syndrome is a life-threatening disease caused by biallelic mutations of the STAMBP gene, which encodes an endosomal deubiquitinating enzyme. To establish a suitable preclinical animal model for clinical therapeutic practice, we generated a central nervous system (CNS)-specific Stambp knockout mouse model ( Stambp Sox1-cKO) that phenocopies Stambp null mice including progressive microcephaly, postnatal growth retardation and complete penetrance of preweaning death. In this MIC-CAP syndrome mouse model, early-onset neuronal death occurs specifically in the hippocampus and cortex, accompanied by aggregation of ubiquitinated proteins, and massive neuroinflam- mation. Importantly, neonatal AAV9-mediated gene supplementation of Stambp in the brain could significantly improve neurological defects, sustain growth, and prolong the lifespan of Stambp Sox1-cKO mice. Together, our fi ndings reveal a central role of brain defects in the pathogenesis of STAMBP deficiency and provide preclinical evidence that postnatal gene replacement is an effective approach to cure the disease.
引用
收藏
页码:4095 / 4107
页数:13
相关论文
共 50 条
  • [41] Recombinant Tafazzin Enzyme Replacement Therapy Rescues Metabolic and Functional Defects in a Mouse Model of Barth Syndrome
    Awata, Junya
    Thomas, Corinne J.
    Dinca, Ana A.
    Chien Wei-Ming
    Blanton, Robert
    Aronovitz, Mark
    Martin, Gregory L.
    Richey, Lauren
    Strathdee, Douglas
    Chin, Michael T.
    CIRCULATION, 2018, 138
  • [42] Stress-Induced Cardiac Mouse Model of Friedreich's Ataxia Corrected by AAV-Mediated Gene Therapy
    Salami, Christiana O.
    Rosenberg, Jonathan B.
    Jackson, Katie L.
    Alyass, Laith
    Jose, Clarisse L.
    De, Bishnu P.
    Sondhi, Dolan
    Kaminsky, Stephen M.
    Crystal, Ronald G.
    MOLECULAR THERAPY, 2018, 26 (05) : 348 - 348
  • [43] AAV-mediated MTMR2 delivery prolongs survival and rescues the pathology in a mouse model of myotubular myopathy
    Daniele, N.
    Moal, C.
    Julien, L.
    Jamet, T.
    Joubert, R.
    Martin, S.
    Vignaud, A.
    Lawlor, M.
    Buj-Bello, A.
    NEUROMUSCULAR DISORDERS, 2016, 26 : S117 - S117
  • [44] Optimization of AAV-Mediated Gene Therapy for the Accelerated Aging Disorder-Cockayne Syndrome
    Chauhan, Monika
    Khadir, Fatemeh
    Daugherty, Audrey L.
    Duzenli, Ozgun Firat
    Tinklenberg, Jennifer A.
    Kang, Peter B.
    Aslanidi, George
    Pacak, Christina A.
    MOLECULAR THERAPY, 2023, 31 (04) : 534 - 534
  • [45] Study on AAV-mediated gene therapy for diabetes in humanized liver mouse to predict efficacy in humans
    Hashimoto, Haruo
    Mizushima, Tomoko
    Ogura, Tomoyuki
    Kagawa, Takahiro
    Tomiyama, Kayo
    Takahashi, Ri-ichi
    Yagoto, Mika
    Kawai, Kenji
    Chijiwa, Tsuyoshi
    Nakamura, Masato
    Suemizu, Hiroshi
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2016, 478 (03) : 1254 - 1260
  • [46] AAV-MEDIATED GENE THERAPY PRODUCES FERTILE OFFSPRING IN THE LHCGR-DEFICIENT MOUSE MODEL OF LEYDIG CELL FAILURE
    Xia, K.
    Wang, F.
    Lai, X.
    Luo, P.
    Chen, H.
    Ma, Y.
    Huang, W.
    Ou, W.
    Li, Y.
    Feng, X.
    Lei, Z.
    Tu, X.
    Ke, Q.
    Mao, F.
    Deng, C.
    Xiang, A. P.
    CYTOTHERAPY, 2022, 24 (05) : S42 - S42
  • [47] AAV-mediated follistatin gene therapy improves functional outcomes in the TIC-DUX4 mouse model of FSHD
    Giesige, Carlee R.
    Wallace, Lindsay M.
    Heller, Kristin N.
    Eidahl, Jocelyn O.
    Saad, Nizar Y.
    Fowler, Allison M.
    Pyne, Nettie K.
    Al-Kharsan, Mustafa
    Rashnonejad, Afrooz
    Chermahini, Gholamhossein Amini
    Domire, Jacqueline S.
    Mukweyi, Diana
    Garwick-Coppens, Sara E.
    Guckes, Susan M.
    McLaughlin, K. John
    Meyer, Kathrin
    Rodino-Klapac, Louise R.
    Harper, Scott Q.
    JCI INSIGHT, 2018, 3 (22):
  • [48] Therapeutic Efficacy of Bone Marrow Transplant, Intracranial AAV-mediated Gene Therapy, or Both in the Mouse Model of MPS IIIB
    Heldermon, Coy D.
    Ohlemiller, Kevin K.
    Herzog, Erik D.
    Vogler, Carole
    Qin, Elizabeth
    Wozniak, David F.
    Tan, Yun
    Orrock, John L.
    Sands, Mark S.
    MOLECULAR THERAPY, 2010, 18 (05) : 873 - 880
  • [49] Stress-Induced Mouse Model of the Cardiac Manifestations of Friedreich's Ataxia Corrected by AAV-mediated Gene Therapy
    Salami, Christiana O.
    Jackson, Katie
    Jose, Clarisse
    Alyass, Laith
    Cisse, Georges-Ibrahim
    De, Bishnu P.
    Stiles, Katie M.
    Chiuchiolo, Maria J.
    Sondhi, Dolan
    Crystal, Ronald G.
    Kaminsky, Stephen M.
    HUMAN GENE THERAPY, 2020, 31 (15-16) : 819 - 827
  • [50] AAV-mediated gene therapy produces fertile offspring in the Lhcgr-deficient mouse model of Leydig cell failure
    Xia, Kai
    Wang, Fulin
    Lai, Xingqiang
    Dong, Lin
    Luo, Peng
    Zhang, Suyuan
    Yang, Cuifeng
    Chen, Hong
    Ma, Yuanchen
    Huang, Weijun
    Ou, Wangsheng
    Li, Yuyan
    Feng, Xin
    Yang, Bin
    Liu, Congyuan
    Lei, Zhenmin
    Tu, Xiang'an
    Ke, Qiong
    Mao, Frank Fuxiang
    Deng, Chunhua
    Xiang, Andy Peng
    CELL REPORTS MEDICINE, 2022, 3 (11)