Predictive modelling of sustainable concrete compressive strength using advanced machine learning algorithms

被引:0
|
作者
Joshi, Tejas [1 ]
Mathur, Pulkit [1 ]
Oza, Parita [1 ]
Agrawal, Smita [1 ]
Narmawala, Husen [1 ]
机构
[1] Nirma Univ, Sch Engn, Civil Engn, Ahmadabad 382481, India
来源
关键词
machine learning; concrete compressive strength; random forest algorithm; regression analysis; web application; SELF-COMPACTING CONCRETE;
D O I
10.13167/2024.29.11
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Considerable efforts have been made to increase the compressive strength of concrete by incorporating industrial by-products such as recycled aggregates and manufactured sand as partial substitutes for natural materials. However, predicting the compressive strength of concrete remains a challenge due to the influence of various factors, such as the type and proportion of aggregates, the water-cement ratio, and the age of the concrete. This research focuses on the development of machine learning (ML) models to predict concrete's compressive strength (CS) at 7 and 28 days. Fifteen input parameters-cement, natural and recycled fine and coarse aggregates, fly ash, manufactured Sand (M- Sand), water, admixture, w/c ratio, and age-were identified as critical factors influencing CS. A data set of 1030 samples from the literature was used, supplemented by additional experiments with recycled aggregates and manufactured sand. The models were trained on 70 % of the data, and the remaining 30% was used for testing. The results show that ML algorithms are highly effective in predicting CS, with the random forest algorithm achieving the highest accuracy (R2 = 0,95; error = 3,74). In addition, a novel WebApp has been developed to leverage these models, allowing users to input parameters and quickly obtain CS predictions for concrete mix designs. The user-friendly interface of the WebApp makes it an easily accessible tool for professionals and researchers in concrete engineering. In this study, the potential of ML, in particular the random forest algorithm, is emphasised as a reliable and costeffective method for predicting concrete CS, providing a valuable alternative to conventional experimental approaches.
引用
收藏
页码:168 / 192
页数:25
相关论文
共 50 条
  • [1] Prediction of compressive strength of sustainable concrete using machine learning tools
    Choudhary, Lokesh
    Sahu, Vaishali
    Dongre, Archanaa
    Garg, Aman
    COMPUTERS AND CONCRETE, 2024, 33 (02): : 137 - 145
  • [2] Predictive modelling of concrete compressive strength incorporating GGBS and alkali using a machine-learning approach
    Gogineni A.
    Panday I.K.
    Kumar P.
    Paswan R.
    Asian Journal of Civil Engineering, 2024, 25 (1) : 699 - 709
  • [3] Prediction of Geopolymer Concrete Compressive Strength Using Novel Machine Learning Algorithms
    Ahmad, Ayaz
    Ahmad, Waqas
    Chaiyasarn, Krisada
    Ostrowski, Krzysztof Adam
    Aslam, Fahid
    Zajdel, Paulina
    Joyklad, Panuwat
    POLYMERS, 2021, 13 (19)
  • [4] Estimating the compressive strength of plastic concrete samples using machine learning algorithms
    Alishvandi A.
    Karimi J.
    Damari S.
    Moayedi Far A.
    Setodeh Pour M.
    Ahmadi M.
    Asian Journal of Civil Engineering, 2024, 25 (2) : 1503 - 1516
  • [5] Advanced Machine Learning Techniques for Predicting Concrete Compressive Strength
    Tak, Mohammad Saleh Nikoopayan
    Feng, Yanxiao
    Mahgoub, Mohamed
    INFRASTRUCTURES, 2025, 10 (02)
  • [6] Predicting the Compressive Strength of Environmentally Friendly Concrete Using Multiple Machine Learning Algorithms
    Yang, Yanhua
    Liu, Guiyong
    Zhang, Haihong
    Zhang, Yan
    Yang, Xiaolong
    BUILDINGS, 2024, 14 (01)
  • [7] Feasibility analysis for predicting the compressive and tensile strength of concrete using machine learning algorithms
    Sami, Balahaha Hadi Ziyad
    Sami, Balahaha Fadi Ziyad
    Kumar, Pavitra
    Ahmed, Ali Najah
    Amieghemen, Goodnews E.
    Sherif, Muhammad M.
    El-Shafie, Ahmed
    CASE STUDIES IN CONSTRUCTION MATERIALS, 2023, 18
  • [8] Predicting the compressive strength of concrete with fly ash admixture using machine learning algorithms
    Song, Hongwei
    Ahmad, Ayaz
    Farooq, Furqan
    Ostrowski, Krzysztof Adam
    Maslak, Mariusz
    Czarnecki, Slawomir
    Aslam, Fahid
    CONSTRUCTION AND BUILDING MATERIALS, 2021, 308
  • [9] Modelling the compressive strength of geopolymer recycled aggregate concrete using ensemble machine learning
    Golafshani, Emad
    Khodadadi, Nima
    Ngo, Tuan
    Nanni, Antonio
    Behnood, Ali
    ADVANCES IN ENGINEERING SOFTWARE, 2024, 191
  • [10] Predictive modeling for compressive strength of 3D printed fiber-reinforced concrete using machine learning algorithms
    Alyami, Mana
    Khan, Majid
    Fawad, Muhammad
    Nawaz, R.
    Hammad, Ahmed W. A.
    Najeh, Taoufik
    Gamil, Yaser
    CASE STUDIES IN CONSTRUCTION MATERIALS, 2024, 20