Predictive modelling of sustainable concrete compressive strength using advanced machine learning algorithms

被引:0
|
作者
Joshi, Tejas [1 ]
Mathur, Pulkit [1 ]
Oza, Parita [1 ]
Agrawal, Smita [1 ]
Narmawala, Husen [1 ]
机构
[1] Nirma Univ, Sch Engn, Civil Engn, Ahmadabad 382481, India
来源
关键词
machine learning; concrete compressive strength; random forest algorithm; regression analysis; web application; SELF-COMPACTING CONCRETE;
D O I
10.13167/2024.29.11
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Considerable efforts have been made to increase the compressive strength of concrete by incorporating industrial by-products such as recycled aggregates and manufactured sand as partial substitutes for natural materials. However, predicting the compressive strength of concrete remains a challenge due to the influence of various factors, such as the type and proportion of aggregates, the water-cement ratio, and the age of the concrete. This research focuses on the development of machine learning (ML) models to predict concrete's compressive strength (CS) at 7 and 28 days. Fifteen input parameters-cement, natural and recycled fine and coarse aggregates, fly ash, manufactured Sand (M- Sand), water, admixture, w/c ratio, and age-were identified as critical factors influencing CS. A data set of 1030 samples from the literature was used, supplemented by additional experiments with recycled aggregates and manufactured sand. The models were trained on 70 % of the data, and the remaining 30% was used for testing. The results show that ML algorithms are highly effective in predicting CS, with the random forest algorithm achieving the highest accuracy (R2 = 0,95; error = 3,74). In addition, a novel WebApp has been developed to leverage these models, allowing users to input parameters and quickly obtain CS predictions for concrete mix designs. The user-friendly interface of the WebApp makes it an easily accessible tool for professionals and researchers in concrete engineering. In this study, the potential of ML, in particular the random forest algorithm, is emphasised as a reliable and costeffective method for predicting concrete CS, providing a valuable alternative to conventional experimental approaches.
引用
收藏
页码:168 / 192
页数:25
相关论文
共 50 条
  • [21] Compressive strength of concrete material using machine learning techniques
    Paudel, Satish
    Pudasaini, Anil
    Shrestha, Rajesh Kumar
    Kharel, Ekta
    CLEANER ENGINEERING AND TECHNOLOGY, 2023, 15
  • [22] Predicting compressive strength of concrete using advanced machine learning techniques: a combined dataset approach
    Abinash Mandal
    Asian Journal of Civil Engineering, 2025, 26 (3) : 1225 - 1241
  • [23] Compressive strength prediction of sustainable concrete incorporating rice husk ash (RHA) using hybrid machine learning algorithms and parametric analyses
    Kashem, Abul
    Karim, Rezaul
    Das, Pobithra
    Datta, Shuvo Dip
    Alharthai, Mohammad
    CASE STUDIES IN CONSTRUCTION MATERIALS, 2024, 20
  • [24] Machine Learning Modelling for Compressive Strength Prediction of Superplasticizer-Based Concrete
    Sadegh-Zadeh, Seyed-Ali
    Dastmard, Arman
    Kafshgarkolaei, Leili Montazeri
    Movahedi, Sajad
    Ghidary, Saeed Shiry
    Najafi, Amirreza
    Saadat, Mozafar
    INFRASTRUCTURES, 2023, 8 (02)
  • [25] Machine-Learning-Based Predictive Models for Compressive Strength, Flexural Strength, and Slump of Concrete
    Vargas, John F.
    Oviedo, Ana I.
    Ortega, Nathalia A.
    Orozco, Estebana
    Gomez, Ana
    Londono, Jorge M.
    APPLIED SCIENCES-BASEL, 2024, 14 (11):
  • [26] Compressive strength prediction of high-strength concrete using machine learning
    Manan Davawala
    Tanmay Joshi
    Manan Shah
    Emergent Materials, 2023, 6 : 321 - 335
  • [27] Compressive strength prediction of high-strength concrete using machine learning
    Davawala, Manan
    Joshi, Tanmay
    Shah, Manan
    EMERGENT MATERIALS, 2023, 6 (01) : 321 - 335
  • [28] Modelling the interface bond strength of corroded reinforced concrete using hybrid machine learning algorithms
    Huang, Tao
    Liu, Tingbin
    Ai, Yan
    Ren, Zhengxi
    Ou, Jiaxiang
    Li, Yunxia
    Xu, Ning
    JOURNAL OF BUILDING ENGINEERING, 2023, 74
  • [29] Assessment of compressive strength of ultra-high-performance concrete using advanced machine learning models
    Tabani, Ahmadullah
    Biswas, Rahul
    STRUCTURAL CONCRETE, 2025,
  • [30] Comparative studies of different machine learning algorithms in predicting the compressive strength of geopolymer concrete
    Paruthi, Sagar
    Rahman, Ibadur
    Husain, Asif
    COMPUTERS AND CONCRETE, 2023, 32 (06): : 607 - 613