Learning Graph Matching with Graph Neural Networks

被引:0
|
作者
Dobler, Kalvin [1 ]
Riesen, Kaspar [1 ]
机构
[1] Univ Bern, Inst Comp Sci, Neubruckstr 10, CH-3012 Bern, Switzerland
基金
瑞士国家科学基金会;
关键词
Structural Pattern Recognition; Graph Matching; Graph Edit Distance; Graph Representation Learning;
D O I
10.1007/978-3-031-71602-7_1
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Graph matching aims at evaluating the dissimilarity of two graphs by defining a constrained correspondence between their nodes and edges. Error-tolerant graph matching, for instance, introduces the concept of a cost for penalizing structural differences in the matching. A popular method for this approach is graph edit distance, which is based on the cost of the minimal sequence of edit operations to transform a source graph into a target graph. One of the main problems of graph edit distance is the computational complexity, which is exponential in its exact form. In recent years, several approximation methods for graph edit distance have been presented which offer polynomial runtimes. In this paper, we approach the graph edit distance problem in a fundamentally different way. In particular, we propose to learn graph edit distance by means of graph neural networks. In a comprehensive experimental evaluation on six data sets, we verify that our approach not only provides comparable classification performance but also substantially reduces the runtime compared to a prominent algorithm for approximate graph edit distance computation.
引用
收藏
页码:3 / 12
页数:10
相关论文
共 50 条
  • [31] Graph Mining with Graph Neural Networks
    Jin, Wei
    WSDM '21: PROCEEDINGS OF THE 14TH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING, 2021, : 1119 - 1120
  • [32] Graph Clustering with Graph Neural Networks
    Tsitsulin, Anton
    Palowitch, John
    Perozzi, Bryan
    Mueller, Emmanuel
    JOURNAL OF MACHINE LEARNING RESEARCH, 2023, 24
  • [33] Adaptive dependency learning graph neural networks
    Sriramulu, Abishek
    Fourrier, Nicolas
    Bergmeir, Christoph
    INFORMATION SCIENCES, 2023, 625 : 700 - 714
  • [34] Learning the Geodesic Embedding with Graph Neural Networks
    Pang, Bo
    Zheng, Zhongtian
    Wang, Guoping
    Wang, Peng-Shuai
    ACM TRANSACTIONS ON GRAPHICS, 2023, 42 (06):
  • [35] Adaptive Transfer Learning on Graph Neural Networks
    Han, Xueting
    Huang, Zhenhuan
    An, Bang
    Bai, Jing
    KDD '21: PROCEEDINGS OF THE 27TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2021, : 565 - 574
  • [36] GNES: Learning to Explain Graph Neural Networks
    Gao, Yuyang
    Sun, Tong
    Bhatt, Rishab
    Yu, Dazhou
    Hong, Sungsoo
    Zhao, Liang
    2021 21ST IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM 2021), 2021, : 131 - 140
  • [37] Learning Ice Accretion with Graph Neural Networks
    Shumilin, S.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2022, 43 (10) : 2887 - 2892
  • [38] Learning Furniture Compatibility with Graph Neural Networks
    Polania, Luisa F.
    Flores, Mauricio
    Nokleby, Matthew
    Li, Yiran
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2020), 2020, : 1505 - 1513
  • [39] Learning Adaptive Neighborhoods for Graph Neural Networks
    Saha, Avishkar
    Mendez, Oscar
    Russell, Chris
    Bowden, Richard
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 22484 - 22493
  • [40] Learning to Count Isomorphisms with Graph Neural Networks
    Yu, Xingtong
    Liu, Zemin
    Fang, Yuan
    Zhang, Xinming
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 4, 2023, : 4845 - 4853