Learning Graph Matching with Graph Neural Networks

被引:0
|
作者
Dobler, Kalvin [1 ]
Riesen, Kaspar [1 ]
机构
[1] Univ Bern, Inst Comp Sci, Neubruckstr 10, CH-3012 Bern, Switzerland
基金
瑞士国家科学基金会;
关键词
Structural Pattern Recognition; Graph Matching; Graph Edit Distance; Graph Representation Learning;
D O I
10.1007/978-3-031-71602-7_1
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Graph matching aims at evaluating the dissimilarity of two graphs by defining a constrained correspondence between their nodes and edges. Error-tolerant graph matching, for instance, introduces the concept of a cost for penalizing structural differences in the matching. A popular method for this approach is graph edit distance, which is based on the cost of the minimal sequence of edit operations to transform a source graph into a target graph. One of the main problems of graph edit distance is the computational complexity, which is exponential in its exact form. In recent years, several approximation methods for graph edit distance have been presented which offer polynomial runtimes. In this paper, we approach the graph edit distance problem in a fundamentally different way. In particular, we propose to learn graph edit distance by means of graph neural networks. In a comprehensive experimental evaluation on six data sets, we verify that our approach not only provides comparable classification performance but also substantially reduces the runtime compared to a prominent algorithm for approximate graph edit distance computation.
引用
收藏
页码:3 / 12
页数:10
相关论文
共 50 条
  • [21] Graph-to-Sequence Learning using Gated Graph Neural Networks
    Beck, Daniel
    Haffari, Gholamreza
    Cohn, Trevor
    PROCEEDINGS OF THE 56TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL), VOL 1, 2018, : 273 - 283
  • [22] Towards Bayesian Learning of the Architecture, Graph and Parameters for Graph Neural Networks
    Valkanas, Antonios
    Panzini, Andre-Walter
    Coates, Mark
    2022 56TH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS, AND COMPUTERS, 2022, : 852 - 856
  • [23] Graph alternate learning for robust graph neural networks in node classification
    Baoliang Zhang
    Xiaoxin Guo
    Zhenchuan Tu
    Jia Zhang
    Neural Computing and Applications, 2022, 34 : 8723 - 8735
  • [24] Graph alternate learning for robust graph neural networks in node classification
    Zhang, Baoliang
    Guo, Xiaoxin
    Tu, Zhenchuan
    Zhang, Jia
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (11): : 8723 - 8735
  • [25] Understanding the Representation Power of Graph Neural Networks in Learning Graph Topology
    Dehmamy, Nima
    Barabasi, Albert-Laszlo
    Yu, Rose
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [26] Learning graph matching
    Caetano, Tiberio S.
    Cheng, Li
    Le, Quoc V.
    Smola, Alex J.
    2007 IEEE 11TH INTERNATIONAL CONFERENCE ON COMPUTER VISION, VOLS 1-6, 2007, : 86 - 93
  • [27] Learning Graph Matching
    Caetano, Tiberio S.
    McAuley, Julian J.
    Cheng, Li
    Le, Quoc V.
    Smola, Alex J.
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2009, 31 (06) : 1048 - 1058
  • [28] Graph Neural Networks for Graph Drawing
    Tiezzi, Matteo
    Ciravegna, Gabriele
    Gori, Marco
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (04) : 4668 - 4681
  • [29] Learning Combinatorial Embedding Networks for Deep Graph Matching
    Wang, Runzhong
    Yan, Junchi
    Yang, Xiaokang
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 3056 - 3065
  • [30] Graph Rewriting for Graph Neural Networks
    Machowczyk, Adam
    Heckel, Reiko
    GRAPH TRANSFORMATION, ICGT 2023, 2023, 13961 : 292 - 301