Quantum and classical magnetic Bloch points

被引:0
|
作者
Kuchkin, Vladyslav M. [1 ]
Haller, Andreas [1 ]
Adams, Michael P. [1 ]
Rai, Venus [1 ]
Sinaga, Evelyn P. [1 ]
Michels, Andreas [1 ]
Schmidt, Thomas L. [1 ]
机构
[1] Univ Luxembourg, Dept Phys & Mat Sci, L-1511 Luxembourg, Luxembourg
来源
PHYSICAL REVIEW RESEARCH | 2025年 / 7卷 / 01期
关键词
D O I
10.1103/PhysRevResearch.7.013195
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A Bloch point represents a three-dimensional hedgehog singularity of a magnetic vector field in which the magnetization vanishes. However, standard micromagnetic theory, developed for magnetic moments of fixed lengths, lacks full applicability in studying such singularities. To address this gap, we study a Bloch point in a quantum Heisenberg model for the case of spin-1/2 particles. Performing an exact diagonalization of the Hamiltonian as well as using density matrix renormalization group techniques, we obtain the ground state, which can be used to recover the corresponding magnetization profile. Our findings demonstrate a variation of the spin length in the quantum model, leading smoothly to zero magnetization at the Bloch point. Our results indicate the necessity of generalizing the classical micromagnetic model by adding the third degree of freedom of the spins: the ability to change their length. To this end, we introduce a phenomenological micromagnetic S3-model, which enables the description of magnets with and without Bloch point singularities.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Domain glasses: Twin planes, Bloch lines, and Bloch points
    Salje, E. K. H.
    Carpenter, M. A.
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2015, 252 (12): : 2639 - 2648
  • [42] ON THE EXTREMAL POINTS OF THE Λ-POLYTOPES AND CLASSICAL SIMULATION OF QUANTUM COMPUTATION WITH MAGIC STATES
    Okay, Cihan
    Zurel, Michael
    Raussendorf, Robert
    QUANTUM INFORMATION & COMPUTATION, 2021, 21 (13-14) : 1091 - 1110
  • [43] A connection between quantum critical points and classical separatracies of electronic states
    Hopkinson, BM
    Kwee, ED
    Knudson, SK
    JOURNAL OF CHEMICAL PHYSICS, 2002, 117 (12): : 5660 - 5669
  • [44] On the extremal points of the Λ-polytopes and classical simulation of quantum computation with magic states
    Okay C.
    Zurel M.
    Raussendorf R.
    Quantum Information and Computation, 2021, 21 (13-14): : 1091 - 1110
  • [45] Quantum tunnelling of the Bloch point in domain boundary of the cylindrical magnetic domain
    Shpak, A. P.
    Shevchenko, A. B.
    Kunitskiy, Yu. A.
    METALLOFIZIKA I NOVEISHIE TEKHNOLOGII, 2007, 29 (12): : 1579 - 1586
  • [46] Quantum tunneling of a Bloch line in the domain wall of a cylindrical magnetic domain
    A. B. Shevchenko
    Technical Physics, 2007, 52 : 1376 - 1378
  • [47] Magnetic Bloch oscillations in a non-Hermitian quantum Ising chain
    Zhang, K. L.
    Song, Z.
    PHYSICAL REVIEW B, 2024, 109 (10)
  • [48] BLOCH STATES OF ELECTRONS IN A CORRUGATED QUANTUM CHANNEL IN A MAGNETIC-FIELD
    LENT, CS
    LENG, MH
    APPLIED PHYSICS LETTERS, 1991, 58 (15) : 1650 - 1652
  • [49] Quantum tunneling of a Bloch line in the domain wall of a cylindrical magnetic domain
    Shevchenko, A. B.
    TECHNICAL PHYSICS, 2007, 52 (10) : 1376 - 1378
  • [50] Magnetic Otto Engine for an Electron in a Quantum Dot: Classical and Quantum Approach
    Pena, Francisco J.
    Negrete, Oscar
    Barrios, Gabriel Alvarado
    Zambrano, David
    Gonzalez, Alejandro
    Nunez, Alvaro S.
    Orellana, Pedro A.
    Vargas, Patricio
    ENTROPY, 2019, 21 (05)